КулЛиб - Классная библиотека! Скачать книги бесплатно 

Подземная гидросфера [Евгений Викторович Пиннекер] (fb2) читать онлайн


 [Настройки текста]  [Cбросить фильтры]
  [Оглавление]


Е. В. ПИННЕКЕР
ПОДЗЕМНАЯ ГИДРОСФЕРА

*
Ответственный редактор

чл. кор. АН СССР В. П. Солоненко


Рецензенты Ю. И. Блохин, И. С. Ломоносов.


© Издательство «Наука», 1984 г.


ПОЧЕМУ И КАК ПОЯВИЛАСЬ ЭТА КНИГА (вместо предисловия)

Мы привыкли к воде, ее мир постоянно окружает нас. Океаны, моря, озера, реки, ледники, дождь и снег… Вода находится не только на поверхности Земли. Встречаем мы ее и в земных недрах, где она заполняет пустоты горных пород и входит в состав минералов. Твердь земная, в сущности, пронизана водой.

Гидросфера — водная оболочка Земли. Принято считать, что основной объем воды сосредоточен в Мировом океане. Но по мере изучения глубин планеты это мнение было поколеблено. Оказывается, в земных недрах ее не меньше, чем на поверхности. Правда, в отличие от наземной водной оболочки подземная гидросфера неоднородна и образует систему, в которой вода в той или иной степени связана с горными породами. Порой так тесно, что неотделима от них.

Интерес к воде земных недр человек проявляет давно. Уже древние цивилизации использовали для своих нужд выводимые родниками пресные и минеральные воды. Легенда приписывает Гераклу честь, кажется, первого человека, осуществившего искусственное получение подземных вод: демонстрируя силу, он глубоко вонзил в землю свою знаменитую дубину, а когда вытащил ее, из возникшего отверстия хлынула вода и образовала целое озеро. Примерно три-четыре тысячелетия назад для вывода подземных вод стали копать колодцы и бурить скважины. Одновременно с использованием их в хозяйственных целях люди еще античных времен (мыслители Фалес, Аристотель, Витрувий и другие) пытались проникнуть в тайны подземной гидросферы.

К сожалению, глубины Земли мы еще знаем плохо. И совсем мало известно о деятельности там воды. Мнения на сей счет весьма разноречивы, порой взаимоисключающи. Нет и единой точки зрения на то, когда вода появилась в недрах Земли. Эти проблемы, как правило, обходят вниманием или упоминают о них скороговоркой. Они действительно сложны. Не удивительно, что до сих пор в учебниках рассматривается обычно подземная вода небольших глубин (редко более 0,5–1 километра) и только в так называемом «жидком» виде. Между тем в земных недрах молекулы Н2О самого различного фазово-агрегатного состояния прослеживаются до глубин в несколько десятков километров, при этом не только под сушей, но и под дном морей и океанов, хотя дно океана для гидрогеологов пока «терра инкогнита».

Научно-популярной литературе в этом плане также не повезло. Правда, подземным водам в последнее время было посвящено несколько интересных публикаций. Назову хотя бы «Невидимый океан» А. А. Карцева и С. Б. Вагина, «Вода под землей» И. Г. Киссина, «Подземные воды — наше богатство» Н. И. Плотникова, «Рассказы о воде: Белорусские криницы» А. В. Кудельского или «Живая вода в недрах Севера» П. Ф. Швецова. Особо хочется отметить популярно и оригинально написанные «Мир воды» В. Ф. Дерпгольца и «Занимательную гидрогеологию» А. К. Ларионова.

Стоит ли еще раз писать о воде земных недр? Да, стоит, и вот почему. Во-первых, все тиражи названных книг полностью разошлись, что свидетельствует об интересе читателя к этой проблеме. Во-вторых, они посвящены главным образом подземным водам, в них мало внимания уделяется подземной гидросфере в целом и геологической деятельности воды, особенно глубоких внутриземных вод. Наконец, в-третьих, в последние годы объем информации, касающейся недр Земли, строения подземной гидросферы и геологии воды растет так быстро, что новая книга просто необходима.

Подземная гидросфера включает все разновидности воды, находящиеся в Земле. Это — вода свободная, то есть вода в обычном понимании, и связанная с породами физически и химически; по фазово-агрегатному состоянию Н2О может быть жидкой, твердой (лед), газообразной (пар) и надкритической (водяной флюид). Наука, изучающая подземную гидросферу, называется гидрогеологией.

Мне приходилось уже писать в научно-популярной форме о подземной гидросфере: в 1979 году издательство «Знание» выпустило небольшую брошюру «Охрана подземной гидросферы». В ней кратко рассмотрены основы современной гидрогеологии, строение и формирование подземной гидросферы, геологическая роль воды, в заключение речь идет о воздействии человека на подземную гидросферу и даются рекомендации по охране ее от негативных последствий этого воздействия. Однако многое, о чем хотелось рассказать, из-за небольшого объема брошюры не нашло освещения. С 1980 года стали выходить издаваемые Комиссией по изучению подземных вод Сибири и Дальнего Востока при Сибирском отделении АН СССР тома «Основы гидрогеологии». Первым был издан том «Общая гидрогеология», затем «Гидрогеохимия», «Гидрогеодинамика» и «Геологическая деятельность и история воды в земных недрах», наконец, в последние годы «Методы гидрогеологических исследований» и «Использование и охрана подземных вод». Шеститомник представляет современный свод знаний о подземной гидросфере и использовании ее ресурсов.

Естественно, встала задача популяризовать изложенные в «Основах гидрогеологии» представления о подземной гидросфере, ее количественно-качественной характеристике, рассказать о жизни воды в земных недрах и участии ее в разнообразных геологических процессах. Поскольку я был одним из инициаторов издания «Основ гидрогеологии», на меня и пал выбор.

В основу предлагаемой книги положена упомянутая уже брошюра «Охрана подземной гидросферы», дополненная новым материалом из шеститомника «Основы гидрогеологии». Вместе с тем автор попытался показать и людей, которые создали гидрогеологию и развивают эту науку в наше время, а также осветить проблемы, волнующие гидрогеологов.

То, о чем пойдет далее речь, сформировалось в значительной степени под влиянием неоднократных встреч с членом-корреспондентом АН СССР П. Ф. Швецовым.

Вот одна из первых. Декабрьский вечер 1977 года. Москва. Квартира в большом здании на Ленинском проспекте. Хозяин кабинета, стены которого сплошь заставлены книгами, — Петр Филимонович Швецов, крупнейший советский гидрогеолог и мерзлотовед. Нас двое.

Речь идет об истории знаний в гидрогеологии, предмете ее изучения и методологии исследования, обсуждается готовящийся к изданию первый том «Основ гидрогеологии». Беседа затянулась. Временами возникает спор: наши точки зрения на современное содержание гидрогеологии не совсем одинаковы.

Петр Филимонович склонен ограничивать объем гидросферы только поверхностной ее частью, поэтому вода, находящаяся в земной коре, по его мнению, не входит в гидросферу. Тут у нас взгляды расходились. Но мы дискутировали не о словах, а о понятиях и вкладываемом в слова смысле. Гидрогеология должна изучать не только подземные воды, а водоносную систему, образуемую водами Земли с вмещающими их горными породами. Вот тут наши мнения были едины, хотя подход к выделению такой системы у каждого отличался и называли мы ее по-разному.

В тот вечер мы говорили долго. Наши точки зрения сблизились по ряду принципиальных вопросов.

Затем встречались еще несколько раз. Запомнилась встреча, состоявшаяся через четыре с половиной года спустя. Обсуждались «Перспективы развития гидрогеологии» — в конце 1981 года статья с таким названием была опубликована в одном из центральных академических журналов. В беседе был затронут достаточно широкий круг гидрогеологических проблем. Разговор шел о водах Земли. В итоге этой беседы у автора окончательно утвердилась мысль рассказать в научно-популярной форме о подземной гидросфере.

Эта мысль получила одобрение у ветерана гидрогеологических исследований, ныне покойного, профессора Алексея Ивановича Дзенс-Литовского, затем у заведующего отделом гидрогеологии Всесоюзного геологического института Евгения Алексеевича Баскова и заведующего кафедрой гидрогеологии Московского геологоразведочного института профессора Владимира Михайловича Швеца. Они дали несколько конструктивных советов. При завершении работы особенно ценными были критические замечания моих коллег, членов редколлегии «Основ гидрогеологии» — Степана Львовича Шварцева, Игоря Сергеевича Ломоносова и Бориса Иосифовича Писарского: они первыми просмотрели рукопись этой книги. Всем им, а также научному редактору — члену-корреспонденту АН СССР Виктору Прокопьевичу Солоненко автор выражает глубокую признательность.

Е. В. Пиннекер

ВЗГЛЯД В ПРОШЛОЕ

Настоящее можно хорошо понять, только зная его прошлое…бороться за будущее можно, лишь учитывая успехи и ошибки прошлых путей.

А. Е. Ферсман. Мои путешествия

Однако есть ли что милей на свете,

Чем уноситься в дух былых столетий

И умозаключать из их работ,

Как далеко шагнули мы вперед.

И. В. Гете. Фауст
Воду земных недр люди использовали уже на заре цивилизации. И тогда же они стали задумываться о ее происхождении.

Преданья старины глубокой. Уже в XXIII веке до нашей эры шумеры — первые обитатели Двуречья — знали, где и как искать подземные воды. На Ближнем Востоке, в Средней Азии, Индии и Китае несколько тысячелетий назад их стали применять для водоснабжения и орошения. Тогда же научились использовать для лечения минеральные воды. В Вавилоне четыре тысячелетия тому назад была создана книга «О сотворении мира»; в ней задолго до Библии описан не только Всемирный потоп, но и борьба божества, которое охраняло воду, вытекающую из недр Земли, с чудовищем преисподней.

Первые догадки относительно природы подземной гидросферы принадлежат античным мыслителям. Подземная вода образуется из морской, учили Фалес и Платон. Среди наивных, подчас фантастических представлений встречаются взгляды, основанные на фактах и глубоких обобщениях. Вероятно, их имел в виду А. Гумбольдт, когда сказал: «Знанию всегда предшествует предположение». Аристотель (IV век до нашей эры) считал, что подземная влага образуется из охлаждающегося в пещерах воздуха, а состав подземных вод отражает состав пород. «Каковы породы, таковы и воды» — этот тезис, высказанный Аристотелем и развитый Плинием Старшим, долгое время считался основополагающим.

Идеи, близкие современным, высказал Витрувий (I век до нашей эры) в своем сочинении «Десять книг об архитектуре». Появление источников и воды в колодцах он объяснял просачиванием внутрь земли дождевых и талых вод: «Лощины меж гор, — писал он, — особенно легко вбирают дождевые воды, и благодаря чаще лесов снега там под прикрытием теней деревьев и гор подолгу сохраняются и затем, по мере таяния просачиваясь по земляным пластам, доходят до самого низа подошвы гор, откуда… бьют ключом источники». Этого ученого можно считать родоначальником инфильтрационной теории образования подземных вод.

В средневековье взгляды древних эллинов и римлян получили развитие в трудах натурфилософов Ближнего Востока и Средней Азии. Из них хочется прежде всего назвать уроженца Хоревма Бируни, который на шесть-семь столетий раньше европейцев объяснил появление гидростатического напора подземных вод. Вот как он это изложил в известном труде «Памятники, оставшиеся от грядущих поколений» (1001 год): «Когда вода поступает из хранилищ, лежащих выше уровня Земли, то она поднимается и бьет вверх под напором». Как это происходит, можно увидеть на рис. 1.



Рис. 1. Примерно так объяснял появление напорных (восходящих) источников Бируни.


Совсем недавно стал известен труд персидского ученого Каради (умер в 1016 году) «Поиски скрытых под землей вод». В нем дано, пожалуй, первое систематизированное изложение учения о подземных водах, сделавшее бы по кругу затронутых вопросов честь современному учебнику. Автор разбирает круговорот воды в природе, выделяет напорные и безнапорные воды, называет растения-индикаторы неглубоко залегающей влаги, оценивает качество подземных вод и, наконец, дает рекомендации по их поискам. Важно и другое: Каради ссылается на многих своих предшественников, занимавшихся аналогичными исследованиями. Иначе говоря, у естествоиспытателей Ближнего Востока тогда уже были определенные успехи в изучении подземных вод.

В Китае буровой станок для сооружения колодцев появился несколько тысячелетий назад. Напорные воды, изливающиеся из скважин, в XII веке впервые получены на севере Франции в провинции Артуа. От латинского ее названия (Артезия) напорные подземные воды и стали называться артезианскими. В это же время на Руси с помощью «верчения» (то есть бурения) сооружаются рассолодобывающие скважины.

Идеи Витрувия и Бируни не скоро получили признание. Сказывалась инерция средневекового застоя, продолжавшаяся до XVI века, когда Георг Агрикола и Бернар Палисси по результатам натурных наблюдений стали пропагандировать мысль, что вода под землей скапливается в результате просачивания из атмосферы. Но с ними многие не соглашались, в том числе выдающиеся умы того времени — Кеплер и Декарт, продолжавшие считать первоисточником подземной гидросферы морскую воду.

Лишь в 1674 году инфильтрационная теория получила подтверждение количественными измерениями. Это сделал француз П. Перро. Боясь критики, он анонимно издал труд «Происхождение источников». Эта книга считается первой работой в области научной гидрологии, трехсотлетие которой ЮНЕСКО отмечало в 1974 году. По содержанию же она не столько гидрологическая, сколько гидрогеологическая. Несколько позднее знаменитый физик Э. Мариотт определил количество атмосферных осадков, идущих на питание подземных вод. Перро и Мариотт и заложили научные основы исследования водного баланса, которые позволили отказаться от бытовавших взглядов на проникновение морской воды под землю и противопоставить догадкам данные измерений.

После работ Мариотта учение об инфильтрационном происхождении подземных вод получило широкое признание. Его придерживался, в частности, великий русский ученый М. В. Ломоносов. Изучались и другие возможные пути пополнения подземных вод. К середине XIX века познание подземной гидросферы существенно расширяется. Назову важнейшие открытия.

Аббат Парамелль, занимавшийся не только отправлением религиозных обрядов, издал книгу об искусстве поиска подземных вод с описанием геологических методов обнаружения водоисточников и грунтовых потоков. У себя на родине, во Франции, он приобрел популярность водоискателя. И не зря: в 90 % случаев (а за 25 лет — это 10 тысяч) его прогнозы на закладку колодцев оказались верными.

Наиболее полно новые представления о подземной гидросфере изложил в своих работах французский геолог Эли де Бомон. Наряду с внешним круговоротом воды он выделил и связанный с ним внутренний, в котором участвуют просочившиеся атмосферные осадки и захороненные при седиментации морские воды, а также пары, выделяющиеся из магмы при ее кристаллизации.

В 1856 году инженер А. Дарси представил муниципалитету Дижона (Франция) отчет о возможности использования подземных вод для водоснабжения города. Вместо четких рекомендаций — пухлый трактат со множеством формул и расчетов, описывающих фильтрацию воды в пористой среде. Отцы города недоумевали… Они и не подозревали, что Дарси установил основной закон движения подземных вод.

Развитие экономики стран Западной Европы и Северной Америки, а позднее и России положило начало широкому использованию подземных вод.[1] Они обеспечили водоснабжение крупных городов — Парижа, Вены, Берлина, Чикаго. Запросы общества и его потребности, которые, как известно, являются движущей силой любой науки, способствовали и энергичному развитию учения о подземных водах, которое вскоре обособилось в самостоятельную отрасль знаний.

Еще в начале XIX века известный естествоиспытатель Ж. Б. Ламарк для обозначения явлений разрушения и отложения посредством воды на поверхности Земли предложил термин «гидрогеология» (рис. 2). В новом понимании, как учение об источниках и подземных водах, его стали употреблять на рубеже 70-х и 80-х годов прошлого века — точнее время появления гидрогеологии, вероятно, определить нельзя.



Puc. 2. Титульный лист книги «Гидрогеология, или исследование влияния вод на поверхность земного шара…» Ж. Б. Ламарка, изданной в 1802 году.


Особенно широкое распространение гидрогеологические исследования получили в России. Ими занимались выдающиеся геологи И. В. Мушкетов, Н. А. Соколов, В. А. Обручев и другие, благодаря которым в обиход вошел термин «гидрогеология» в современном понимании.

Первый штатный гидрогеолог. В Крыму, на западной окраине Алушты, у подножья горы Кастель высится обелиск. На нем выбита надпись: «Николаю Алексеевичу Головкинскому». Головкинский (1834–1897) — первый в мире штатный гидрогеолог. Такая должность потребовалась Крыму, и ее учредило Таврическое губернское земство в 1886 году специально для него — опального профессора геологии, покинувшего пост ректора Новороссийского (ныне Одесского) университета и переселившегося в Крым. Такой должности не было до того не только в России, но и за рубежом.

Жизненный путь, широкая эрудиция этого подвижника показывают, что последующие поколения исследователей подземных вод могут гордиться «гидрогеологом № 1». За сравнительно короткий срок Головкинский становится одним из виднейших специалистов своего дела, высказавшим продуманные идеи о происхождении подземных вод, давшим много рекомендаций, где и как их искать в засушливом Причерноморье. Он был типичный ученый-практик. Его усадьба «Кастель-гора» стала своеобразным научным и культурным центром Крыма и получила название «Профессорский уголок». Сюда заглядывали все, кто посещал Крым с научными целями, любители искусства и литературы. Николай Алексеевич был душой общества, знатоком природы Крыма, он недурно рисовал и даже печатался в литературных журналах. Но больше всего к нему приходили и приезжали как к гидрогеологу, просили указать места, где можно заложить скважину на воду.

Ежегодно на протяжении 10 лет он составлял «Отчеты гидрогеолога». Авторитет и популярность Головкинского среди всех слоев населения были так высоки, что, когда он скончался, Таврическое земство постановило соорудить на его могиле памятник и выделило средства Московскому обществу испытателей природы на премию его имени за лучшее сочинение по гидрогеологии Крыма. Участники Крымской экскурсии VII Международного геологического конгресса (1897 год), подготовку которой осуществил Головкинский и перед началом которой он внезапно умер, решили создать первому штатному гидрогеологу интернациональный памятник: каждый из них прислал на могилу свой камень. Эти камни (а их было несколько десятков) стали составной частью обелиска, воздвигнутого в 1900 году (рис. 3). Что касается премии имени Головкинского, то она так никому и не была присуждена: не нашлось достойных работ.



Рис. 3. Памятник Н. А. Головкинскому в Алуште. Рисунок П. К. Тыглиянца — правнука Н. А, Головкинского.  

Становление гидрогеологии. Гидрогеология зародилась и развивается вплоть до настоящего времени на стыке геологии, то есть науки о Земле, и гидрологии — науки, занимающейся изучением гидросферы и природных вод.

Относительно времени возникновения гидрогеологии мнения расходятся: одни ведут отсчет от Ламарка или начала широкого использования подземных вод для водоснабжения в первой половине XIX века, другие, наоборот, относят его к 20–30-м годам XX века, к периоду оформления гидрогеологии как самостоятельной дисциплины, создания учреждений гидрогеологического профиля и соответствующих кафедр в вузах. Однако правильнее все-таки временем ее рождения считать последнюю треть XIX века: с того периода термин «гидрогеология» стал использоваться в современном понимании, тогда же формируются основы учения о подземных водах и, наконец, появляются первые представители этой науки — гидрогеологи.

Широкий размах в конце XIX века приобретают региональные гидрогеологические исследования. Систематизированное изложение учения о подземных водах дают в это время А. Дебре во Франции, И. В. Мушкетов в России, И. Гааз в Германии, Ч. Слихтер в США. Среди немногих региональных работ выделяется труд члена-корреспондента Санкт-Петербургской академии наук С. Н. Никитина «Грунтовые и артезианские воды на Русской равнине», содержащий изложение методов изучения подземных вод и ставший образцом региональных обобщений. В начале XX века появляются работы по методике гидрогеологических исследований.

С самого зарождения гидрогеология была не только учением о подземных водах. Уже в первые десятилетия в ее поле зрения находились пары воды и газово-жидкие растворы магмы, в частности когда дело касалось происхождения или состава подземных вод. Иначе говоря, гидрогеологию интересовала жизнь всех видов воды, заключенных в недрах Земли. С этих позиций весьма оригинальное определение дал ей еще в 1900 году С. Н. Никитин: это наука «о подземной ветви общего природного круговорота воды на Земле». Широко привлекала гидрогеология достижения других наук, в первую очередь математики, физики, химии, смежных геологических дисциплин.

Почти полстолетия — последнюю четверть XIX и первую четверть XX века — длился диспут о путях проникновения влаги в земные недра. Инициатором его был австрийский инженер О. Фольгер. Он обрушился на инфильтрационную теорию, заявив: «Нет подземной воды из дождевой». По его мнению, вода не просачивается, а попадает внутрь Земли в виде влажного воздуха: конденсирующаяся влага и питает подземные воды. Яростный спор вокруг гипотезы Фольгера разрешил русский ученый А. Ф. Лебедев. Точными замерами ему удалось установить, что сравнительно с просачиванием конденсация дает гораздо меньше подземных вод. Он же выявил механизм перемещения влаги в почвогрунтах и характер перехода воды из одного состояния в другое.

А как появляются глубокие воды — термы и рассолы? Эти вопросы стали волновать ученых уже в начале XX века, но и сейчас они окончательно не решены.

Крупнейший геолог и знаток «лика» Земли Э. Зюсс в 1902 году на одном из съездов естествоиспытателей смело заявил: «Термы — продукт магмы, они ювенильны». Под ювенильными (то есть девственными) Зюсс понимал воды, которые отщепляются в виде пара от магмы и впервые вступают в круговорот воды на Земле. Синтез этих вод из водорода и кислорода происходит на больших глубинах.

Что касается соленых вод и рассолов, которые повсеместно встречаются на нефтегазовых промыслах и соляных месторождениях, то их считали ископаемыми водами морского происхождения. Эти воды попадают в недра Земли при осадконакоплении и отжимаются из илов в пористые коллекторы, сохраняясь в них как реликты бассейнов осадконакопления прошлых геологических эпох. К такому выводу пришли почти одновременно, изучая воды глубоких горизонтов с разных позиций, австрийский геолог Г. Гефер, русский академик Н. И. Андрусов и американский гидролог А. Лейн.

Гипотезы ювенильных и ископаемых вод с самого начала имели сторонников и противников. К настоящему времени, благодаря накопленному обширному материалу по гидрогеологии глубоких горизонтов, обе концепции претерпели значительные изменения, однако остались в основе наших знании о происхождении ресурсов и состава подземных вод и в той или иной мере подтверждены новыми фактами.

Так постепенно происходило становление гидрогеологии. С годами появились успехи в познании динамики и состава подземных вод, изучении региональных гидрогеологических закономерностей и использовании подземных вод для водоснабжения и в медицине. Все это нашло отражение в фундаментальных обобщениях и учебных пособиях, среди которых наиболее известными считались труд русского гидрогеолога П. В. Отоцкого, трижды переиздававшаяся книга знатока грунтовых вод и минеральных источников Центральной Европы немецкого гидрогеолога К. Кейльгака и работы американца О. Мейнцера — специалиста в области теоретической и прикладной гидрогеологии. Особо хочется отметить исследования, проведенные сибирским геологом А. В. Львовым и положившие начало изучению подземных вод мерзлой зоны Земли.

Резкий скачок в развитии гидрогеологии произошел в нашей стране в 20–30-е годы, когда изучение подземных вод приобрело планомерный характер. Опираясь на богатый отечественный опыт и огромный фактический материал, советские гидрогеологи выступили с новыми теоретическими и прикладными разработками буквально по всем направлениям гидрогеологии. Это вопросы классификации подземных вод, принципы гидрогеологического картирования и районирования, закономерности распределения и формирования воды в недрах Земли, методические приемы гидрогеологических исследований, проблемы рационального использования подземных вод. В Ленинграде, Москве, Новочеркасске, Томске, Ташкенте появились кафедры, специализировавшиеся на выпуске инженеров-гидрогеологов.

Первый учебник гидрогеологии в нашей стране (1922 год) составил новочеркасский профессор П. Н. Чирвинский. Ему же принадлежит создание исторического направления в гидрогеологии. Весомый вклад в развитие гидрогеологии внесли М. М. Васильевский, А. И. Дзенс-Литовский, О. К. Ланге, Н. Ф. Погребов, Ф. П. Саваренский, Н. Н. Славянов, Н. И. Толстихин. Из большого числа работ, посвященных подземной гидросфере и гидросфере вообще, следует указать на «Историю природных вод» академика В. И. Вернадского, опубликованную в середине 30-х годов. В ней обобщен опыт многовекового изучения воды на Земле. Книга эта не утратила своего энциклопедического значения и в наши дни. В. И. Вернадский не отрицал наличия ювенильных и ископаемых вод, но считал, что в основной своей массе вода проникает в земную кору сверху и имеет метеорную природу. Очень важное значение он придавал переходу воды из одного состояния в другое. Он же обратил внимание на воду, выделяемую из минералов, и водяные пары, часть которых освобождается из магмы или, наоборот, захватывается ею.

В 30–40-х годах сформировалась школа советских гидрогеологов во главе с талантливым ученым и крупным организатором науки академиком Ф. П. Саваренским. Ему принадлежат глубокие теоретические обобщения, заслуга в основании при Академии наук СССР Лаборатории гидрогеологических проблем. Достойными представителями этой школы, продолжателями традиций Ф. П. Саваренского были член-корреспондент АН СССР Г. П. Каменский, открывший новые закономерности движения и формирования подземных вод, и профессор А. М. Овчинников — автор оригинальных трудов по минеральным водам, гидрогеохимии и палеогидрогеологии. В 50–70-х годах составлены гидрогеологические карты СССР (И. К. Зайцев, Н. А. Маринов, Н. В. Роговская), карты подземного стока (Б. И. Куделин), минеральных вод (В. В. Иванов).

Предмет и содержание современной гидрогеологии. Колоссальные потребности в подземных водах как комплексном полезном ископаемом, с одной стороны, и жизненно важная проблема охраны ресурсов подземной гидросферы, вызванная глобальным воздействием на нее человека, с другой, — вот что стимулирует в наше время бурный расцвет гидрогеологии.

Некоторые зарубежные ученые (Д. К. Тодд и Р. де Уист в США и А. Гисслер в ГДР) склонны в учении о подземных водах различать гидрогеологию («геологию подземных вод») и геогидрологию («гидрологию подземных вод»). Такой подход представляется формальным, ибо сразу возникает вопрос, куда же тогда относить, скажем, «геохимию подземных вод» или «физику подземных вод»?

Во второй половине XX века в гидрогеологии фактически наступил качественно новый этап развития. Если до этого в ней господствовал описательный элемент и она была учением о явлениях, то теперь стала превращаться в науку о процессах, стремящуюся вскрыть присущие предмету ее исследований закономерности. Совершенно иной уровень приобрел элемент предвидения в связи с глубоким воздействием человека на жизнь подземной гидросферы.

Невозможно перечислить всех выдающихся гидрогеологов современности. Это армия специалистов различного профиля, как узкого, так и широкого. Поток разносторонней информации вызвал к жизни новые идеи относительно происхождения, движения и количественно-качественной характеристики внутриземных вод. Кажется, мы находимся накануне открытий принципиального значения, касающихся основ гидрогеологии.

Переходный период в любой науке неизбежно связан с кризисом роста. В гидрогеологии он выразился в пересмотре ее фундаментальных положений и уточнении перспектив развития. Кризис роста — не значит отставание, это осмысливание современного состояния и поиски путей движения вперед.

Наряду с другими принципиальными вопросами перед гидрогеологами возник и тривиальный вопрос: «Что же изучает гидрогеология?»

Ответить на него оказалось не так-то просто. Определение «Гидрогеология — учение о подземных водах» к этому времени себя исчерпало. Чтобы изучать процессы и закономерности, вызванные деятельностью воды в недрах Земли, требуется знать все внутриземные разновидности Н2О, с которыми взаимодействуют подземные воды и с которыми образуют они единую водоносную систему. Без этого просто невозможно понять характер движения и пути формирования подземных вод.

В середине 70-х годов относительно содержания гидрогеологии были высказаны иные мнения. Член-корреспондент АН СССР П. Ф. Швецов назвал ее наукой «об истории формирования и последующих изменениях водообменных систем», понимая под водообменной системой насыщенные водой толщи горных пород. Несколько отличное толкование мы встречаем у академика АН БССР Г. В. Богомолова: «Гидрогеология — наука о взаимодействии подземной воды с твердым и газообразным веществом Земли». Эти формулировки предпочтительнее прежней, но и они не раскрывают всего содержания гидрогеологии. Заложенные в них рациональные мысли (системный подход и наличие взаимодействия) будут учтены, если считать гидрогеологию наукой о подземной гидросфере — водоносной системе недр Земли, в которой различные разновидности Н2О взаимодействуют с горными породами и газами. Такое определение в 70-х годах признали многие исследователи. В частности, его разделяют профессора Н. И. Плотников, Е. В. Посохов, Ф. А. Макаренко, доктора геолого-минералогических наук В. Н. Корценштейн и С. И. Смирнов, член-корреспондент АН КазССР Ж. С. Сыдыков.

Переходный период в гидрогеологии выразился и в расширении круга гидрогеологических проблем. Долгое время она оставалась существенно прикладной наукой, но теперь в ней наметился ряд теоретических и методических направлений:


Теоретические разделы

Общая гидрогеология

Основы учения о подземной гидросфере, происхождение и закономерности распространения воды в недрах Земли

Гидрогеодинамика

Движение, режим и ресурсы подземных вод, гидрогеологическое моделирование

Гидрогеохимия

Закономерности миграции химических элементов в подземной гидросфере, состав подземных вод и его формирование

Гидрогеотермия

Термические свойства и особенности подземной гидросферы

История подземной гидросферы (палеогидрогеология)

Происхождение и эволюция подземной гидросферы, геологическая деятельность воды в недрах Земли и ее роль в различных геологических процессах


Методические и прикладные разделы
Методика гидрогеологических исследований (методическая гидрогеология)

Методы проведения гидрогеологических исследований (съемка, поисково-разведочные, режимные, опытные, лабораторные и камеральные работы)

Использование подземных вод

Учение о месторождениях подземных вод и применении подземных вод для водоснабжения, мелиорации, в лечебных, промышленных и термоэнергетических целях

Борьба с подземными водами

Влияние подземных вод на обводненность месторождений полезных ископаемых, условия мелиорации земель, строительство

Охрана подземной гидросферы (техногенная гидрогеология)

Загрязнение и истощение ресурсов подземной гидросферы, защитные мероприятия и управление ее режимом

Региональная гидрогеология

Региональное изучение и описание подземных вод и других компонентов подземной гидросферы


Но главное заключается в изменении существа гидрогеологических исследований, вытекающих из новых требований к гидрогеологии. До недавнего времени они состояли преимущественно в количественно-качественной оценке подземных вод и выяснении их роли при проведении различных видов строительства. Сейчас, когда воздействие человека на подземную гидросферу стало повсеместным и угрожает ее ресурсам, наряду с этими задачами важнейшими проблемами гидрогеологии следует считать прогноз режима подземной гидросферы и разработку методов управления им. Задача принципиально новая и не только прикладная, но и теоретическая. Ее цель — изучение подземных вод в неразрывной связи с другими компонентами подземной гидросферы, познание водообмена и массопереноса для всей водоносной системы Земли, а не отдельной ее, пускай даже ведущей, разновидности. В сущности, вопрос стоит о направленном вмешательстве человека в жизнь подземной гидросферы в целях рационального использования и охраны ее водных ресурсов.

Насколько велика сейчас роль предвидения, следует хотя бы из того, что созванная в 1982 году Всесоюзная гидрогеологическая конференция была посвящена проблеме «Формирование подземных вод как основа гидрогеологических прогнозов». Именно генетическая сторона, констатировали собравшиеся на этот форум гидрогеологи, представляет теоретическую основу практического предвидения гидрогеологических процессов в условиях все возрастающего техногенного воздействия на них. Как тут не вспомнить афоризм: «Что может быть практичнее хорошей теории»!

Достижения современной гидрогеологии опираются на новый и весьма представительный материал о подземной гидросфере. Гидрогеологические исследования охватывают все новые и новые территории, проникают на все большие глубины. В 70-х годах увидела свет «гидрогеологическая энциклопедия» — изданная Всесоюзным институтом гидрогеологии и инженерной геологии 50-томная монография «Гидрогеология СССР», появились различные карты подземных вод, на повестке дня стоит вопрос о составлении гидрогеологической карты мира. Гидрогеологам удалось приоткрыть тайну появления воды в недрах Земли, в этом им помогли данные сверхглубокого бурения, результаты геофизических и геохимических исследований.

Контуры подземной гидросферы и происходящие в ней процессы все отчетливее вырисовываются перед исследователями. Становится совершенно очевидным: все, что происходит с участием воды в верхней части земной корьц в той или иной степени представляет отражение процессов, которые происходят в глубинах земных недр.

Так к началу последней четверти XX века гидрогеология расширила круг своих задач, превратившись из учения о подземных водах в науку о подземной гидросфере. Правда, пока между действительным содержанием гидрогеологии, поскольку она имеет дело все же преимущественно со свободными водами недр Земли, и предметом ее изучения, то есть подземной гидросферой, есть еще расхождения, но постепенно они сводятся к минимуму.

Итак, заглянув в прошлое, мы видим, что гидрогеология развивалась и развивается в борьбе мнений и дискуссиях. На пороге своего столетия она, образно выражаясь, вступила во вторую молодость. Причиной ее стремительного развития служит актуальность и жизненность решаемых задач: предметом гидрогеологии является важнейший компонент окружающей природной среды, то есть то-, что требует настоятельного изучения для обеспечения сохранности среды обитания человека.

И еще вот о чем подумалось после сделанного исторического обзора. Нельзя осваивать ресурсы подземной гидросферы без учета ее прошлого и будущего. Сиюминутные соображения, как бы они ни были важны, необходимо сочетать с ретроспективой и перспективой. Невольно вспомнилась эмблема Н. К. и С. Н. Рерихов: три кружка, обведенные единой окружностью. Их эмблема имеет глубоко символический смысл: «Прошлое, настоящее и будущее в круге вечности», которым, вероятно, следует руководствоваться и при освоении ресурсов подземной гидросферы. Такой подход обеспечит их рациональное использование и надежную охрану.

ЧТО ТАМ, В ЗЕМНЫХ НЕДРАХ!

Вода существует везде.

Античное изречение

Вода пропитывает всю Землю — изнутри, снаружи, сверху; ее жилы расходятся во всех направлениях как связующие звенья.

Плиний Старший
Как-то мне пришлось выступать перед весьма представительной аудиторией, рассказывая о только что выполненной оценке естественных ресурсов подземных вод юга Восточной Сибири. В зале находились ученые различных специальностей — физики, энергетики, геологи, биологи, географы и многие другие. Раньше такой оценки не было. А цифры впечатляли: в недрах юга Восточной Сибири мы установили значительные количества воды, обеспечивающие отбор в среднем 2, а местами 5–10 литров в секунду с каждого квадратного километра. Вообще же подземный сток составлял 30 % общего стока. Это не просто много, а очень много. Парадокс?

Нет, в действительности одна треть водных ресурсов, при этом ресурсов первоочередного использования, спрятана у нас под ногами. Присутствовавшие выслушали это известие кто с интересом и одобрением, кто настороженно и с недоверием. Особенно недоумевал один видный ученый-энергетик. Почему-то у него, имеющего дело с энергией ГЭС крупных сибирских рек, такая высокая доля подземных вод в общем водном балансе суши вызывала сомнение. Напрасно я приводил сведения, что для суши в целом получена даже большая цифра, не убедили его геологи и географы, которые приводили примеры использования ресурсов подземных вод для водоснабжения крупных городов и обводнения громадных земельных массивов.

Этот ученый-энергетик вспоминается, когда заходит речь о количестве воды в недрах Земли. Его, как правило, занижают. Даже на вопрос «Что у нас под ногами?» ответ стереотипен: «почва», реже — «горные породы» или «Земля». Про воду забывают. А ведь земная твердь буквально заполнена водой, представляет настоящий «невидимый океан»! Насколько громадна масса подземной гидросферы, многие даже и не подозревают.

Сколько воды в земной коре. Любое исследование начинается с оценки того, что будет предметом изучения. Недаром говорят: «Изучить — значит измерить». Прежде всего — о глубине распространения подземной гидросферы. Вода прослеживается от поверхности Земли до верхней мантии; ниже водородные связи рвутся и молекула Н2О, как правило, не существует. Иначе говоря, подземная гидросфера пронизывает всю земную кору, мощность которой — от 4,5–7 километров на дне океанов до 35–70 километров на суше. Величина немалая! Однако все познается в сравнении. Чтобы иметь представление о толщине земной коры, принято сравнивать земной шар с яйцом. Тогда яичная скорлупа будет аналогом земной коры.

К сожалению, в большинстве оценок объема гидросферы из совокупной массы подземной ее части в расчет принимается только «жидкая» свободная вода, да и то обычно не вся, а на какую-то небольшую глубину земной коры.

Сошлюсь, например, на цифру, приведенную в монографии «Мировой водный баланс и водные ресурсы Земли», подготовленной в СССР по итогам Международного гидрогеологического десятилетия (1965–1974 годы). Авторы ее учитывали лишь воду в самом верхнем слое, до абсолютной отметки минус 2000 метров, то есть на глубину 2,5–3 километра. Количество подземных вод получилось равным 23,4 миллиона кубических километров, что составляет от суммы других водных ресурсов (океаны, озера, ледники, реки и т. д.) только 1,69 %. Несколько больший (60 миллионов кубических километров) объем приводится в расчете советского гидролога М. С. Львовича, который к подземным водам относит свободную и физически связанную воду в верхней толще земной коры мощностью 5 километров. Тогда подземные воды (табл. 1) составят 4 % общего объема гидросферы.



На самом деле воды в земных недрах гораздо больше. В последнее время при бурении Кольской и других сверхглубоких скважин установлено, что даже так называемая «жидкая» вода обнаруживается на глубине, намного превышающей 5 километров. Если же учесть воду в других состояниях и фазах, которая, как мы уже отмечали, прослеживается до слоя Мохоровичича (раздел между земной корой и мантией), то она должна возрасти более чем на порядок по сравнению с приведенными расчетами.

Количественная оценка водных ресурсов подземной гидросферы — проблема, имеющая несколько подходов и несколько решений. В зависимости от характера принимаемых в расчет исходных данных (объем земной коры и содержание в породах воды) ответы получаются самые разные. Одним из первыхполную оценку массы подземной гидросферы попытался дать в начале XX века И. Д. Лукашевич: он принял ее равной объему океанической воды, то есть 1370 миллионов кубических километров, или 1420×109 миллионов тонн. Примерно в три раза меньшую величину по содержанию водорода для 16-километровой толщи литосферы получил- в 20-х годах академик В. И. Вернадский.

В дальнейшем приемы определения количества внутри-земной воды совершенствовались, но сопоставимых цифр так и не получено. До сих пор существуют минимальные и максимальные оценки. Уточнение массы подземной гидросферы остается важнейшей задачей наук о Земле на будущее. С. А. Брусиловский, ориентируясь на минимальные параметры, получил массу подземной гидросферы, равную 600×109 миллионов тонн, что составляет немногим более 40 % от количества воды на поверхности Земли. А вот расчет недавно скончавшегося ленинградского гидрогеолога В. Ф. Дерпгольца. Приняв среднее содержание воды в породах континентальной (средняя мощность около 35 километров) и океанической (4,7 километра) коры за 12,5 %, он получил массу подземной гидросферы, равную 1070×109 миллионов тонн. Наконец, согласно максимальным оценкам, приведенные массы подземной гидросферы занижены по крайней мере в 3–5 раз.



Рис 4. Изменение содержания воды в породах земной коры и верхней мантии.


Каким же результатам верить? Скорее всего, масса внутриземных вод сопоставима с массой поверхностных вод, поскольку около 3500×109 миллионов тонн воды должно было выделиться при дегазации мантии за всю историю Земли. Эта цифра получена в результате определения массы «обезвоженных» пород верхней мантии (рис. 4). Если учесть, что около 1000×109 миллионов тонн воды распалось на кислород и водород или улетучилось в космическое пространство, то эта выкладка косвенно подтверждает расчет В. Ф. Дерпгольца (табл. 2), который представляется самым оптимальным.



В 1963 году Владимир Федорович Дерпгольц на предварительной защите кандидатской диссертации в Геологическом институте АН СССР обосновал оценку количества вод на Земле. Ему задавали много вопросов. Подвижный и сухощавый, этот седой человек бойко отвечал и оперировал собственноручно вычерченными цветными диаграммами, защищая идею ювенильного происхождения глубинной гидросферы Земли. С этой идеей почти никто из присутствовавших не был согласен, но сам докладчик, его эрудиция и манера защищать трудно доказуемое вызывали уважение. Председательствовал руководитель гидрогеолого-геотермического отдела Геологического института АН СССР Ф. А. Макаренко, который когда-то тоже занимался оценкой объема воды в недрах Земли. Новые цифры его убедили, и он в заключение своего выступления сказал: «Сделанная мной 15 лет назад оценка устарела, а Владимир Федорович, как мне представляется, учел современные данные и правильно подсчитал массу подземной гидросферы».

Я в то время как-то не интересовался количеством внутриземных вод. Меня больше занимал генезис «гидрохлоробферы», как называл Дерпгольц глубинную гидросферу Земли. Подкупала доходчивость изложения наиболее сложных вопросов формирования подземных вод. Когда кончилось обсуждение, мы разговорились. Владимир Федорович — человек сложной судьбы, работавший в 30-х годах изыскателем на БАМе, а потом в енисейском секторе Арктики. Он наблюдал и описал многие природные феномены, в том числе и такие, приближаться к которым небезопасно — скажем, взрыв наледи или зыбучий, засасывающий человека снег. Это был пенсионер, много работавший и одержимый идеей ювенильного происхождения «гидрохлоросферы». «Я не служу, а пишу», — говорил он. Вскоре вышел в свет автореферат его диссертации с весьма примечательным эпиграфом: «Никому не дано монополии на истину», а некоторое время спустя увлекательные «популярно-научные», как он их назвал, книги.

Итак, теперь мы знаем, сколько воды в земной коре. Ее почти столько же, сколько и на поверхности Земли. Подземная гидросфера — громадная емкость, соизмеримая по массе воды с Мировым океаном.

Единство и круговорот природных вод. Цифры статической массы гидросферы дают одностороннее представление о водных ресурсах Земли. Гидросфера — единая динамичная система, в которой все разновидности воды взаимодействуют друг с другом и находятся в постоянном круговороте.

Водные массы Земли взаимосвязаны, они пронизывают атмосферу, литосферу, биосферу. Эту мысль впервые высказал великий естествоиспытатель и тонкий знаток всего, что связано с водой, академик В. И. Вернадский. «Любое проявление природной воды, — указывал он, — глетчерный лед, безмерный океан, река, почвенный раствор, гейзер, минеральный источник — составляют единое целое, прямо или косвенно, но глубоко связанное между собой».

Идею единства природных вод, так четко сформулированную В. И. Вернадским, подтверждает существование круговорота воды на Земле и балансовое равновесие между обеими частями гидросферы — наземной и подземной.

Почти аналогичные мысли встречаются у лидера советской гидрогеологии 30-х и 40-х годов академика Ф. П. Саваренского. «Гидрогеология, — писал он в одной из последних своих работ, изданной в 1947 году, уже после его смерти, — не может рассматривать подземную гидросферу отдельно для верхней зоны ее и отдельно для нижней… Мало того, подземную гидросферу нельзя рассматривать отдельно от наземной, так как подземные воды верхних зон земной коры непосредственно связаны с поверхностными водами».

Федор Петрович одним из первых обратил внимание на то, что гидрогеологам необходимо изучать не только подземные воды, но и подземную гидросферу в целом, которая, по выражению его ученика А. М. Овчинникова, представляет «литосферу, пропитанную водой».

Чтобы понять процесс формирования подземных вод, Ф. П. Саваренский рекомендовал изучать процессы взаимодействия водных растворов с горными породами и газами в каждой термодинамической зоне подземной гидросферы. Таких зон, по его представлениям, три: магматическая, в которой Н2О растворена в магме и, вероятно, диссоциирована; пневматолитовая, где находится пароводяная смесь; и, наконец, зона жидкой воды. Изучение формирования воды земных недр Ф. П. Саваренский считал основной задачей созданного им теоретического центра при АН СССР — Лаборатории гидрогеологических проблем.

В сложном круговороте воды наименее изучены подземные звенья. Они разнообразны и труднее доступны для наблюдения. Тем не менее для любых разновидностей подземных вод, несмотря на их кажущееся различие, мы видим неразрывность и неделимость: йода из одного состояния переходит в другое. И так вплоть до мантии, причем всякое изменение количества воды в Земле, где-либо происходящее, неизбежно отражается на общей массе подземной гидросферы или гидросферы Земли в целом. В подземной гидросфере, таким образом, все виды Н2О находятся в равновесном состоянии, образуя систему «пар лед вода связанная вода свободная».

Равновесие в этой системе обратимое. Если в каком-то месте количество Н2О убывает, то где-то в другом оно возрастает на точно такую же величину. Кроме того, компоненты подземной гидросферы тесно связаны не только с горными породами, но и с живым веществом, атмосферой, космосом и мантией.

Классические представления о круговороте воды в природе, знакомые из школьных учебников, описываются уравнением водного баланса: X = Y + Z, где X — атмосферные осадки, Y — сток (поверхностный и подземный), Z — испарение.

Такова общая схема гидрологического круговорота воды. В ней различают большой и малый круговороты. При большом круговороте (см. рис. 5) водяные пары, образовавшиеся в результате испарения над поверхностью морей и океанов, переносятся на сушу, где выпадают в форме дождя или снега, затем вода снова попадает в моря и океаны через поверхностный или подземный сток. Малые круговороты носят локальный характер и реализуются в пределах сравнительно небольших участков суши или океана. Насколько велики цифры водного баланса земного шара и территории СССР, видно из табл. 3.



Гидрологический круговорот обеспечивает водообмен внутри водоемов, а также взаимосвязь наземных и подземных вод. Темп водообмена для отдельных видов природных вод самый различный (см. табл. 1).

Если полный водообмен в океанах, ледниках и глубоких водоносных горизонтах происходит очень медленно — в течение тысячелетий и даже миллионолетий, то верхняя (до глубин 0,3–0,5 километра) подвижная часть подземных вод, которая активно взаимодействует с поверхностными водами, обновляется в среднем 3 раза в тысячелетие. Ресурсы почвенной влаги и неглубоких водоносных горизонтов заменяются почти ежегодно. Еще быстрее происходит смена воды в реках (за 12 суток) и атмосфере (за 10 суток). Высокая подвижность речных и атмосферных вод, несмотря на незначительный объем (тысячные и стотысячные доли процента от всей массы гидросферы), выдвигает эти две составляющие в число основных элементов водного баланса Земли.

Однако традиционный гидрологический круговорот, происходящий по схеме «осадки — сток (поверхностный и подземный) — испарение», охватывает только верхнюю часть земной коры, которую принято называть зоной интенсивного водообмена. Вода с поверхности хотя и проникает на более значительные глубины, в зоны замедленного и весьма затрудненного (пассивного) водообмена, но темп водообмена там заметно падает, возобновление совершается, как уже отмечалось, за тысячелетия и даже мидлионолетия.

Неполнота такого представления о круговороте в последние годы стала очевидной; оно далеко не отражает всего многообразия движения воды в земной коре, особенно в глубоких ее частях. Наиболее удачную модель всеобщего круговорота воды предложил в 1980 году томский гидрогеолог С. Л. Шварцев. В ней наряду с гидрологическим выделяется геологический круговорот, обусловленный участием воды в различных геологических процессах — седиментации, литогенезе, метаморфизме, магматизме. Оба круговорота связаны друг с другом (рис. 5). В отличие от достаточно сложного гидрологического, геологический круговорот еще более сложен. Он совершается преимущественно на глубинах и в различных обстановках. В нем выделяются три этапа (осадочный, метаморфический, магматический), каждый из которых в какой-то мере самостоятелен. Вместе с тем геологический круговорот связан и с наземной гидросферой. Обмен водой происходит также между земной корой и мантией, хотя о его балансе пока судить трудно.



Рис. 5. Так представляется взаимодействие гидрологического и  геологического круговоротов воды в природе.


Из каких компонентов состоит подземная гидросфера? Впервые классификацию разновидностей воды в почвах и горных породах дал А. Ф. Лебедев. Применительно к гидрогеологии в целом на основании его классификации и современных представлений различается шесть главных компонентов подземной гидросферы:

вода в форме пара;

вода в твердом состоянии;

физически связанная вода;

свободная вода;

вода в надкритическом состоянии; химически связанная вода.

В пространстве между земной поверхностью и постоянным уровнем подземных вод водяной пар заполняет незанятые жидкой фазой пустоты горных пород. Проникая сверху, он конденсируется и образует физически связанную и свободную («жидкую») воду. Этот слой водяного пара — мощность его обычно не превышает нескольких метров, но прослеживается он почти под всей сушей — только незначительная часть парообразной воды Земли. Вероятно, больше горячего пара: он образуется при выходе перегретых вод (с температурой от 100 (а в горах даже ниже) до 374–450 °C) на поверхность Земли в гейзерах и вулканах или встречается в виде пароводяной смеси. При надкритических значениях температуры (374 °C для «чистой» воды и 450 °C для водных растворов) и давления (более 218 атмосфер) различия между жидкостью и паром стираются: в этом случае молекулы приобретают скорость газа, а плотность становится близкой к единице, как у «жидкой» воды.

Льда в земной коре не так много. Однако и не мало, поскольку он встречается не только в сезонно-мерзлом слое, а главным образом в толще вечномерзлых пород. Мощность же последних местами достигает 1,5 километра, да и распространены они на большой территории (47 % площади Советского Союза). Встречаются мерзлые породы также под дном северных морей. В мерзлом состоянии вода образует кристаллики, жилы или прослои льда, иногда бугры с растущим (за счет подтока воды снизу) ледяным ядром — гидролакколиты.

В одной из детских сказок великан пытается выжимать воду из камня. Возможно ли это? Оказывается, очень легко. Если взять в руку кусок мерзлой горной породы, вода выделяется уже от тепла ладони…

Физически связанная вода находится в той или иной степени взаимодействия с частицами породы, на основании чего она разделяется на прочносвязанную (гигроскопическую) и рыхлосвязанную (пленочную). Ее может быть много, как в донном иле, и мало, что мы видим в уплотненном или высушенном суглинке. Влажность — количество физически связанной воды от общего объема породы — тем больше, чем меньше минеральные частицы. Особенно велика (более 50 %) влажность глин.

Хорошо связана с минеральными частицами гигроскопическая влага: она в виде молекул водяного пара сконцентрирована на их поверхности. Менее прочно удерживается пленочная вода, которая образует как бы вторую пленку поверх гигроскопической влаги. Отделиться вода от частицы породы может только в том случае, если силы притяжения по мере роста толщины пленки ослабнут и начнут преобладать «растягивающие усилия», обусловленные земным притяжением.

Физически связанная вода удаляется из породы путем высушивания или отпрессования. Как показали экспериментальные исследования, при давлении 3000–5000 килограммов на квадратный сантиметр почти вся рыхло- и прочносвязанная вода глин способна переходить в свободное состояние. Эта вода отпрессовывается из микрокапиллярных пор горных пород и поэтому называется поровым (горным) раствором. В естественных условиях поровые растворы постоянно выжимаются при уплотнении осадочных толщ.

При упоминании о поровых растворах, мне хочется несколько отклониться и рассказать о них чуть подробнее.

На поровые растворы приходится значительная часть подземной гидросферы. Только на дне океана, где илы имеют влажность до 60–90 %, их объем составляет примерно 145 миллионов кубических километров. Чтобы приведенная цифра была более осязаемой, следует ее сравнить с объемом Мирового океана, приведенным в таблицах 1 и 2. Сравнили? Да, читатель, это 10 % всех океанических вод Земли!

Один из зарубежных исследователей поровых растворов доктор П. Дитрих после ознакомления с томами «Основы гидрогеологии» упрекнул их авторов за недооценку роли поровых растворов, в особенности иловых вод. Упрек в какой-то мере справедливый. Действительно, как мы видели, поровые растворы представляют один из важнейших компонентов подземной гидросферы, велика их роль как переносчика растворенных веществ, как агента преобразования многих месторождений полезных ископаемых. Однако гораздо ощутимее геолого-геохимическое значение других компонентов подземной гидросферы (скажем, свободных вод), в отличие от которых роль поровых растворов еще очень слабо изучена. Именно так во время дискуссии с П. Дитрихом я объяснил «дискриминацию» поровых растворов. А вообще-то мы еще вернемся к ним в главе «Скульптор земной коры».

Свободная вода объединяет воду включений в минералах, капиллярную и гравитационную. Если вода минеральных включений заполняет изолированные и закрытые пустоты различных размеров, представляя захороненные реликты среды минералообразования, то капиллярная влага заполняет открытые поры «сухих» пород (выше уровня подземных вод) и может передвигаться под влиянием сил поверхностного натяжения. Высота капиллярной каймы достигает 6 метров и более. По сравнению с гравитационной водой эти две разновидности свободных вод имеют подчиненное значение.

Гравитационная вода как раз и образует скопления подземных вод. Она передвигается благодаря силе тяжести и напорному градиенту. Различают инфильтрующуюся воду, которая просачивается сверху вниз, и фильтрующуюся воду — она движется в виде потока по водоносному пласту. Количество гравитационной воды зависит от гранулометрического состава, пористости и трещиноватости горных пород. В глинах такая вода практически отсутствует (коэффициент водоотдачи всегда меньше 1 %). В случае крупных фракций (песок, гравий, галечник) или повышенной трещиноватости пород гравитационная вода преобладает над всеми остальными видами воды (коэффициент водоотдачи повышается до 10–30 % и даже более).

Инфильтрующаяся вода находится преимущественно в зоне аэрации — это как раз и есть пространство между поверхностью Земли и постоянным уровнем подземных вод. Тут поры заполнены воздухом, парами воды или физически связанной водой, а гравитационная вода появляется периодически: во время снеготаяния и после выпадения дождей. Вертикальное движение сверху вниз продолжается до тех пор, пока вода не встретит слоя с низкой водопроницаемостью — водоупора. На нем возникает горизонтальный поток подземных вод. Вода тогда образует зону насыщения, где и заполняет все поры и пустоты, вытесняя воздух. Исключение представляют нефтегазовые залежи и пласты: тут поры бывают заняты также нефтью и газом.

В верхних горизонтах потоком подземных вод движет гидростатический напор, вызывающий перемещение воды от высоких гипсометрических отметок к низким. На больших глубинах напорный градиент возникает чаще всего благодаря геостатическому давлению, создающему поток выжимаемых из уплотняющихся осадочных толщ вод, проявлению внутриземных сил — тектонических напряжений, и магматическим процессам, из-за которых функционируют восходящие потоки глубинных вод. Однако местами гидростатический напор проникает вниз на 5–6,5 километров.

Когда речь идет о зоне насыщения, имеется в виду вода в жидкой фазе. Нижняя граница этой зоны достигает глубины критических температур и давлений. Глубже вода находится в надкритическом состоянии, о котором ранее уже рассказывалось. Это особое состояние Н2О представляет своего рода «водяную плазму», отличающуюся гораздо большей, чем у жидкой фазы, подвижностью и очень высокой — в десятки раз по сравнению с «нормальными» условиями — растворяющей способностью. Переход из надкритического состояния в пар или жидкость сопровождается увеличением объема Н2О в 1,5–2 раза, а понижение температуры — выпадением из раствора рудных компонентов, что имеет очень важное геологическое значение.

Химически связанная вода входит в состав кристаллической решетки минералов. Одна ее разновидность — конституционная вода — не совсем правильно называется водой: это гидроксил (ОН-) или водород (Н+), превращающийся в Н2О только после выделения из минералов.

Другая разновидность — кристаллизационная вода — свойственна минералам, находящимся в условиях низких температур и давлений. Более 50 % кристаллизованной воды содержат сода Na2CO3×10Н2О (64 %) или мирабилит Na2SO4×10Н2О (55 %). Отделение ее вызывает разрушение кристаллической решетки минералов и образование безводных соединений, что в большинстве случаев достигается нагреванием до температуры не более 300~400 °C. Очень много воды образуется при переходе гипса CaSO× 2Н2О в ангидрит CaSO4, поскольку гипсоангидритовые толщи имеют региональное распространение.

Наконец, нельзя не сказать о «плачущих камнях» — цеолитах. В них вода связана с кристаллической решеткой непрочно, примерно как у физически связанной влаги. Цеолитная вода присуща, например, натролиту Na2Al2Si3O10×2Н2О. Отделение ее происходит в широком интервале температур, даже без нагревания, и не вызывает разрушения кристаллической решетки минералов. В силу особенностей структуры цеолитов удаленная из них вода при изменении термодинамической обстановки легко восстанавливается.

Полезно сравнить основные слои земной коры (осадочный, гранитный и базальтовый) с фазовой зональностью подземной гидросферы (рис. 6).



Рис. 6. Вот как меняется состояние Н2О в подземной гидросфере.

1 — лед, 2 — жидкая вода, 3 — вода в надкритическом состоянии, 4 —  мантия, где водородные связи разорваны и вода как таковая не существует.

Пунктиром показаны границы осадочного и гранитного (тонкая линия)  и гранитного и базальтового (жирные линии) слоев.


В осадочном слое Земли, то есть в среднем до глубины 5 километров, Н2О всюду, кроме территории распространения многолетнемерзлых пород, встречается в жидкой фазе. Примерно с глубины 12–16 километров на континентах и глубже 3 километров под океанами, а в областях современного вулканизма уже на глубине 1,5–2 километра (то есть в гранитном и базальтовом слоях) вода находится в надкритическом состоянии: здесь Н2О не может перейти в жидкость, как бы ни изменялось давление. А давление в глубоких частях земной коры достигает нескольких десятков тысяч атмосфер! Прибегнем к образному сравнению: надкритическую часть подземной гидросферы, на которую приходится почти 50 % ее массы, можно уподобить гигантскому котлу, где Н2О находится в состоянии сжатой пружины и стремится вырваться через вулканы или гейзеры.

Водоносные сосуды Земли. Одному из классиков геологии принадлежит выражение: «Вода — кровь Земли». В таком случае пустоты горных пород, содержащие воду, можно называть сосудами. Подземные воды — наиболее подвижный компонент подземной гидросферы — заключены в разнообразных водоносных сосудах, которые сообщаются между собой и тесно связаны друг с другом. Представляя подземные водоносные системы — емкости подземных вод, они имеют разные наименования: «гидрогеологическая структура», «водонапорная система» и так далее. Мне представляется весьма удачным термин «резервуар подземных вод» как собирательное понятие для геологического тела, содержащего подземные воды, хотя его синоним — «подземная водоносная система» — в этом значении представляется более емким.

Подземные водоносные системы — будем называть их так — имеют различные размеры, строение и форму. Это не только коллекторы. Когда резервуар обладает сложным строением, в нем коллекторы сочетаются с водоупорами. В зависимости от положения в пространстве он может быть и накопителем, и проводником подземных вод. Иначе говоря, такое понятие отражает формы жизни подземных вод.

Элементарное геологическое пространство, в котором находится подземная вода, представляет собой либо пору, либо трещину того или иного размера. Именно из водосодержащих пор или трещин состоят подземные водоносные системы. В зависимости от этого формируются порово-пластовые или трещинные и трещинно-жильные коллекторы подземных вод.

Самое мелкое подразделение резервуаров — это коллек-г тор с более или менее однородным распределением подземных вод. В осадочных породах сочетание обводненных пор, иногда и трещин образует водоносный горизонт — пласт, насыщенный водой и залегающий между водоупорами или над водоупором. Водоносным горизонтом называют и верхнюю выветрелую часть кристаллических пород, содержащую воду в трещинах.

Более сложные резервуары — водоносный комплекс и гидрогеологическая формация. Особым типом коллекторов подземных вод служат протяженные каналы, сообщающиеся каверны и полости — они представляют водоносную жилу. Заполненные водой карстовые пустоты или «открытые» разломы — таковы примеры водоносных жил.

По характеру залегания и напорным свойствам водоносные горизонты и другие резервуары аналогичного порядка принято разделять на грунтовые (безнапорные) и артезианские (напорные).

Читателю, вероятно, приходилось видеть естественные выходы подземных вод. Как они разнообразны! Уже по их форме можно заключить, с каким из перечисленных резервуаров они связаны. Скажем, вытянутая вдоль склона группа источников с медленно струящейся водой — это пластовый безнапорный водоносный горизонт. Наоборот, бурно выбивающаяся из трещины вода говорит о водоносной жиле, в которой вода находится под напором. Порой напор настолько велик, что возникает фонтан.

В платформенных и складчатых разломах различают фундамент, сложенный смятыми в складки кристаллическими породами, и перекрывающий его чехол, представленный слоистыми осадочными породами. В зависимости от коллекторских свойств горных пород и характера резервуара принято различать: артезианские бассейны — погружения, выполненные слоистыми осадочными породами чехла и содержащие преимущественно пластовые воды; гидрогеологические массивы — выступы кристаллических пород фундамента, где господствуют трещинные или трещинно-жильные воды.

Артезианский бассейн и гидрогеологический массив отличаются по форме геологического тела, распределению и особенностям движения подземных вод. Различны и содержащиеся в них скопления подземных вод, что позволяет их называть соответственно «бассейн пластовых вод» и «массив трещинных вод». Два последних названия более предпочтительны, чем термины «артезианский бассейн» и «гидрогеологический массив», поскольку резервуары подземных вод в этом случае сравниваются по сопоставимым и противопоставляющимся друг другу признакам. Тогда, кстати, гораздо проще решается вопрос о проведении границы бассейна с массивом: она отвечает смене коллекторских свойств.

Бассейн и массив значительных размеров и сложного строения, в отличие от простого бассейна и простого массива, могут рассматриваться как сложный бассейн и сложный массив.

В следующую градацию входят резервуары, отвечающие более значительным геологическим телам. Система бассейнов отвечает плите — опущенной части платформы, которая вмещает несколько сложных бассейнов пластовых вод, разделенных поднятиями или выступами кристаллического фундамента. К системе массивов относятся щиты — приподнятые цоколи древних платформ. Что же касается системы массивов и бассейнов подземных вод, то она представляет объединяемую единой ветвью складчатости совокупность резервуаров трещинных и пластовых вод, при этом последние в ней обычно имеют подчиненное значение.

Наконец, самыми крупными резервуарами будут гидрогеологический кратоген, отвечающий платформе, и гидрогеологический ороген, который охватывает пояс геосинклинальных (складчатых) сооружений. Названия «кратоген» как синоним устойчивости (по-гречески «кратос» — сила, крепость) и «ороген», — отражающее складчатость и горообразование («орос» — гора), говорят о закономерности распространения и формирования подземных вод в крупнейших геологических телах. Коренные различия в истории подземных вод — вот что очень хорошо отличает гидрогеологический кратоген от гидрогеологического орогена.

Картирование и изучение подземных водоносных систем является одной из главных задач гидрогеологических исследований. Одновременно рассмотренная номенклатура водоносных сосудов представляет основу гидрогеологического районирования. В зависимости от размера, строения и формы подземная водоносная система соответствует определенному гидрогеологическому региону, каждый из которых отличается единством природных гидрогеологических условий (табл. 4). Регион — обобщенное название порядковых единиц районирования безотносительно ранга. Под гидрогеологическим регионом понимают часть поверхности и недр Земли, выделяющуюся единством особенностей формирования, распространения и использования подземных вод. Это — проекция подземной водоносной системы на земной поверхности.



РОДОСЛОВНАЯ ВОДЫ

Воды, в которые я вступаю, не пересекал еще никто.

Данте. Божественная комедия

Легче изучить движение спутников Юпитера, чем течение воды.

Галилео Галилей
В каждой науке есть разделы, вокруг которых идут постоянные споры. Для гидрогеологии это прежде всего комплекс вопросов, касающихся формирования подземной гидросферы. Вот некоторые иа них: как появилась вода в Земле? по каким законам она там движется? как диагностировать первоисточники подземных вод? сколько времени они находятся в земных недрах? Мы уже знаем, что разрешить их пытались давно. Тем не менее до сих пор нет однозначного ответа, который бы не вызвал возражений оппонентов.

«Всякий раз, когда имеешь дело с водой, прежде всего обратись к опыту, а потом уже рассуждай» — эти слова были сказаны великим естествоиспытателем, художником и мыслителем Леонардо да Винчи. Сохраняют они свою силу и в наши дни. Отсутствие представительной информации является главной причиной существования множества различных концепций происхождения и движения внутриземных вод. На сей счет даже шутят: «Два гидрогеолога — три мнения».

Широко используемый традиционный термин «подземные воды» менее точен, чем только что приведенное сочетание «внутриземные воды». Об этом уместно сказать сейчас, поскольку термин «подземные воды» имеет прямое отношение к родословной воды: он восходит к взглядам древнегреческого философа Платона, согласно которым Земля будто бы плавает на воде, заполняющей огромный подземный резервуар Тартар; воду вгоняют туда ветры из моря или же она просачивается через почву. Бездна Тартар, полная вечной тьмы, как полагал Платон, питает источники и реки. В значительной мере на допущениях основывались и более поздние представления о появлении воды в недрах Земли (Аристотель, Сенека, А. Кирхер), хотя они и отвергали идею Тартара.

Попытки заменить укоренившийся термин «подземные воды» на более точные эквиваленты («внутриземные воды», «подпочвенные воды», «воды литосферы» и т. д.), к сожалению, успеха не имели. Традиция есть традиция!

В последние годы удалось «просветить» подземную гидросферу. Исследователи стали располагать, в частности, информацией о возникновении гидросферы и законах движения воды в земной коре.

Возникновение гидросферы неразрывно связано с развитием Земли как планеты. Вода появилась одновременно с горными породами 4–5 миллиардов лет назад. Советский геохимик академик А. П. Виноградов, объясняя механизм появления воды, сравнивал его с зонной плавкой, применяемой в технике для разделения металлов различного удельного веса. Подобная выплавка, по его мнению, происходила в результате разогревания вещества мантии и разделения его на две фазы: тугоплавкую — дуниты и легкоплавкую — базальты. В ходе процесса к периферии Земли устремились флюиды — наиболее летучие компоненты базальтовой магмы, из которых и образовалась вода.

Точка зрения Виноградова основывается на общепринятой в космогонии гипотезе образования нашей планеты из рассеянного космического вещества с последующим постепенным разогревом первоначально холодной Земли и обособлением в ее наружной части сферических оболочек, одной из которых и является гидросфера. Однако есть и другие взгляды: согласно им гидросфера образовалась на поверхности изначально горячей Земли при конденсации космического вещества. В таком случае она должна иметь космическое, а не внутриземное происхождение. Эту концепцию разделяет ряд исследователей (В. М. Гольдшмидт, В. И. Ферронский и другие), хотя широкого признания она не получила.

Итак, принято считать, что мантия — первоисточник воды на Земле. В пей содержится, как правило, пе вода, а водород, который способен при соединении с кислородом образовывать воду. Сгенерированная из кислорода и водорода в недрах Земли вода называется ювенильной. Потенциальные водные ресурсы мантии составляют 20×1018 тонн. В соответствии с расчетами, на образование гидросферы пошло 3,4×1018 тонн воды, из которых 1×1018 тонн распалось на кислород и водород или улетучилось в космическое пространство, а 2,4×1018 тонн (и это согласуется с данными табл. 3) осталось в гидросфере. Если соотнести массу выделившейся воды и вес земной коры (он равен 47×1018 тонн), то получится, что выплавленные мантией породы должны были содержать 7 % воды. Примерно такое же количество водяного пара выделяют продукты современных вулканических извержений, то есть эта цифра может считаться своего рода константой для подземной гидросферы.

В небольшом количестве вода на Землю попадала и попадает из космоса. Однако по сравнению с мантией из этого источника поступило воды на четыре порядка меньше, буквально «капля в океане». Гораздо больше воды Земля теряет в космос. Фактически мантия — главный источник воды на Земле.

Подземная гидросфера — в ней вода в значительной мере связывалась породами — стала формироваться раньше наземной. Только порции поднимающейся воды, которые достигали поверхности Земли, положили начало Мировому океану.

Основная часть воды из мантии, по-видимому, выброшена в течение первого миллиарда лет геологической истории. Вначале выделялись восстановленные флюиды, среди которых преобладали водород и водородные соединения. Наиболее вероятный механизм образования Н2О — окисление водорода при его взаимодействии с силикатами, окислами и вообще кислородсодержащими породами.

Увеличение количества воды привело к изменению строения земной коры, например к образованию гранитного и осадочного слоев, становлению Мирового океана, появлению атмосферы. Изменился и состав флюида — он стал окисленным.

Если в архее, то есть 2 и более миллиарда лет тому назад, вода из мантии «просачивалась» равномерно сквозь земную кору, участвуя в ее преобразовании, то в последующее время восходящий поток все больше приурочивался к ослабленным зонам — разломам и интрузиям. Полтора миллиарда лет назад, на рубеже архея и протерозоя, породы благодаря воздействию воды достигли близкой к современной плотности, сочетающейся с хрупкостью. Кроме ювенильных вод вес большее значение в верхних горизонтах стали приобретать так называемые вадозные (дословно «блуждающие») воды, которые обязаны своим появлением процессам осадконакопления в морских бассейнах, инфильтрации и регулярному круговороту воды в природе. Объем высвобождаемой воды в послеархейское время заметно снизился. Скорее всего, уже в протерозое он не превышал количества ювенильных вод, поступающих из недр в настоящее время, то есть 0,1–1,0 кубических километров в год.

Облик подземной гидросферы создавался постепенно. О составе первичного водного раствора известно мало. Тем не менее есть основания полагать, что в нем было гораздо больше углерода и некоторых металлов, чем в современном Мировом океане. Количество хлора и брома не изменилось, а вот содержание сульфатов резко возросло. Сущность изменения заключалась в сохранении солей с повышенной растворимостью и удалении элементов, переходящих в труднорастворимые соединения.

На эволюцию состава подземных вод большое влияние оказал Мирбвой океан. При наступлениях и отступлениях моря очень много солей морской воды оставалось в породах. Недаром некоторые исследователи, в том числе известные советские ученые В. А. Сулин и Е. В. Посохов, высокую минерализацию и специфический хлоридный кальциевый состав рассолов глубоких горизонтов бассейнов пластовых вод считают наследием прошлых геологических эпох, когда в морской воде кальций доминировал над натрием. В свою очередь, подземный и поверхностный сток выносили в Мировой океан не меньше солей. Так начал функционировать солеобмен между океаном и подземной гидросферой.

Колоссальная водная масса Мирового океана слабо реагирует на воздействие окружающей среды. Он длительное время остается инертным, отражая в своем составе геологические условия предыдущих эпох. Правда, во второй половине XX века на его составе начинает заметно сказываться загрязнение.

Механизм транспортировки воды из мантии в верхние горизонты и на поверхность Земли еще окончательно не известен. Многое здесь проясняет система взглядов, получившая название «новой глобальной тектоники» и очень быстро завоевавшая популярность. Остановимся на ее гидрогеологической интерпретации.

Вследствие растягивающих усилий на дне океанов и поверхности Земли образуются рифты — глубокие ослабленные зоны, которые уходят «корнями» в мантию. Наиболее протяженные рифтовые зоны отмечаются в срединно-океанических хребтах (рис. 7). По ним поднимается вверх вещество мантии. Поскольку в результате раздвижения дна океана литосферные плиты погружаются под континент, в местах погружения (их называют зонами Беньофа — Заварицкого) происходит обезвоживание серпентинитов с высвобождением громадного количества воды. Эта вода частично поступает через вулканы на поверхность или в океан. При обезвоживании на больших глубинах она выжимается вверх сквозь континентальную кору, участвуя в формировании гранитного слоя и образовании минеральных ассоциаций. Наконец, какая-то ее часть возвращается обратно в мантию.



Рис. 7. Принципиальная схема появления воды из мантии с  позиций новой глобальной тектоники.


1 — поток ювенильных флюидов, обеспечивающий серпентинизацию основания океанической коры; 2 — движение ювенильных флюидов при дегазации вещества мантии в срединно-океанических рифтовых зонах; 3 — поток Н2О из зон Беньофа — Заварицкого, появляющийся при расплавлении и дегидратации океанической коры; 4– конвекционные токи вещества астеносферы; 5 — направление движения океанических плит.

Океаническая кора (I) погружается под континентальную (II) вследствие растягивающих усилий в рифтовой зоне срединно-океанического хребта (VII). Благодаря этим усилиям вдоль границы астеносферы (IV) происходит движение литосферных плит (III) с образованием зон Беньофа — Заварицкого (V) и их «отражения» в виде глубоководных желобов (VI). Очаги магмообразования (IX, X и XI) и вулканы (VIII) появляются соответственно в зонах рифта и Беньофа — Заварицкого.


Так рисуется появление воды с позиций новой глобальной тектоники. Эта концепция полностью не раскрывает картины движения воды, но во многом подтверждает ранее высказывавшиеся предположения о существовании активных дрен мантии. Более того, по таким флюидопроводникам (например, через континентальные рифты) могут проникать на значительные глубины вадозные воды.

Интересную попытку объяснить характер обезвоживания земной коры сделал С. М. Григорьев в своей гипотезе о дренажной оболочке (рис. 8). Степан Макарович отводит воде роль главной движущей силы в эволюции земной коры.



Рис. 8. Схема движения воды в земной коре по представлениям С. М. Григорьева.


1 — нисходящее движение воды и водных растворов сквозь континентальную кору в дренажную оболочку; 2 — горизонтальное перемещение воды в дренажной оболочке; 3 — восходящее движение паров и водных растворов сквозь океаническую кору из дренажной оболочки; 4 — движение нисходящих водных растворов и восходящих паров в дренажной оболочке.


Дренажная оболочка, по представлениям Григорьева, располагается между изотермами 374 и 450 °C в основании континентальной коры, отвечая базальтовому слою. Выше нее наблюдаются нисходящие токи воды и водных растворов, которые, достигнув дренажной оболочки, вытесняют кверху пар. Разгрузка из дренажной оболочки происходит на дне океана в области его сочленения с континентом. Действительно, в таких местах образуются вулканы и месторождения полезных ископаемых, появление которых автор гипотезы связывает с деятельностью дренажной оболочки.

В свое время гипотеза Григорьева вызвала сенсацию. Она привлекает доступностью, простотой, но во многом противоречит фактам, поэтому сомнения в возможности функционирования дренажной оболочки весьма основательны.

Глубина погружения поверхностных вод через ослабленные зоны достигает 5–8 километров, при этом движущей силой американский гидрогеохимик Д. Уайт считает не столько гидростатический напор, сколько различие в плотности: «тяжелые» холодные воды стремятся вниз и вытесняют вверх «легкие» горячие воды. Подобный механизм хорошо объясняет образование термальных источников, выносящих на поверхность тепло земных глубин.

Двоякую роль играет и внедряющаяся в земную кору магма. По мере подъема она выделяет воду, но при определенных условиях также связывает ее или, действуя как поршень, «засасывает» в трещины — каналы из вмещающих пород.

О формах движения воды. Вся наличная информация о появлении и транспортировке воды из мантии — она была приведена в самом сжатом виде — указывает на существование в земной коре разветвленных систем глубинного стока и дренажа. Вода находится там в постоянном движении. В геологической истории Земли она непрерывно генерировалась на разных уровнях (в мантии и земной коре) и в различных потоках (региональных и локальных). Вследствие высокой растворяющей способности ей выпала роль универсального переносчика химических элементов как при выносе их из мантии, так и при перераспределении внутри земной коры. Насколько велика растворяющая способность воды в условиях больших глубин и давлений, свидетельствует такой факт: на границе с мантией она в 3 раза выше, чем у земной поверхности. Кроме того, вода выполняет и функцию переносчика тепла.

Приведенные в эпиграфе к этой главе слова Галилея сказаны четыре столетия назад применительно к движению воды в потоке. Но они хорошо отражаютсовременное состояние изученности водообмена в земных глубинах: пути перемещения здесь воды мы не можем определить с такой точностью, как протяженные орбиты небесных тел. А ведь подземные воды находятся от нас на расстоянии всего нескольких метров или первых километров. Разве это не парадокс?

Рассмотрим формы движения воды.

Когда я был студентом, в конце 40-х годов, в гидрогеологии господствовала концепция наличия на больших глубинах так называемой зоны «застойного водного режима». Даже странно, но сторонники этой точки зрения, несмотря на хорошо известный принцип «все течет, все изменяется», сумели многим внушить представление об «относительном покое» в глубоких водоносных горизонтах. Отдельные гидрогеологи до сих пор придерживаются этой концепции.

Дальнейшие исследования отчетливо показали, что формы движения воды в земной коре разнообразны. Привлекая известные слова поэта, можно сказать, что здесь «покой нам только снится», поскольку вода всегда и всюду движется. Это не только механическое перемещение, интенсивность которого с глубиной действительно снижается, но также физические, химические, биологические и другие виды движения. Поэтому было бы неверно сводить движение воды лишь к перемещению под действием силы тяжести. За многообразием движения нельзя не видеть единства, взаимосвязи и взаимообусловленности его видов. Тут следует говорить о единой геологической форме движения воды в земной коре как о разновидности геологической формы движения материи.

Необходимость выделения геологической формы движения материи обосновали в конце 50-х годов философ Б. М. Кедров и геолог М. М. Одинцов, по определению которых она представляет способ существования минеральных и вообще неорганических веществ. Ее нельзя сводить к простой сумме физических, химических или биологических форм. Она представляет качественно особую форму, ей свойственны свои собственные законы движения и развития, пока еще недостаточно изученные.

Геологическая форма движения воды имеет сложную природу, будучи важнейшей составляющей геологической формы движения материи. Она выражается и в перемещении воды сквозь горные породы, и в движении вместе с веществом земной коры при различных геологических процессах, и в переходе из одного фазового или физического состояния в другое. Неотъемлемая черта этой формы движения — непрерывное взаимодействие с породами, газами и живым веществом, при котором вода, перемещаясь и влияя на их состав и свойства, постоянно изменяется и сама.

Профессор С. Л. Шварцев различает три разновидности геологической формы движения воды:

метеогенная, наблюдаемая в приповерхностной части земной коры и характеризующаяся преобладанием инфильтрации, но сопровождающаяся и другими видами движения (например, переходом воды из свободного состояния в связанное, жидкой фазы в парообразную или твердую и т. д.):

литогенная, когда перенос воды связан главным образом с литификацией пород, т. е. высвобождением ее из связанного состояния, что имеет место на глубинах;

магматогенная, которая типична для гидротермальных систем, расположенных вблизи магматических очагов.

Виды такого движения воды обусловлены преимущественно изменением высоких температур, давления и газонасыщенности (выделение из магматического расплава, переход из парообразного в жидкое состояние и т. д.).

Пока изучены далеко не все виды геологической формы движения воды. Познать во всем многообразии законы движения воды в недрах Земли — одна из главнейших задач гидрогеологии и смежных наук.

Первоисточники подземных вод. Подземные воды, выводимые родниками или вскрываемые скважинами, по своей природе вторичны. Первоисточники воды «переработаны» в ходе геологической истории. Знать же их необходимо, поэтому говорят о генетическом облике подземных вод, который обусловлен исходными разновидностями и характеризует долю участия каждой из них в изучаемом образце.

Поскольку подземная гидросфера «питается» и с поверхности, и из земных глубин, подземные воды могут быть разделены на экзогенные, т. е. проникшие с поверхности, и эндогенные, которые поступают из глубин. Иногда их называют так, как это делал Э. Зюсс, именовавший первые — вадозными, а вторые — ювенильными.

Для сравнения объема тех и других укажем, что если количество ежегодно выносимой из мантии эндогенной воды оценивается ориентировочно в 0,1–1,0 кубический километр, то лишь в зону интенсивного водообмена с поверхности суши в результате инфильтрации попадает приблизительно 10 000 кубических километров воды в год. Общее же количество образующихся экзогенных вод в несколько раз больше.

Схема генетической классификации подземных вод, приведенная на рис. 9, включает далеко не все, а только основные разновидности подземных вод. Например, в ней отсутствуют некоторые виды подземных вод, генерируемые в земной коре (скажем, органогенные).

Начнем с экзогенных вод. Они делятся на метеогенные, то есть воды атмосферного происхождения, и талассогенные — морского происхождения. При такой трактовке акцент делается на первоисточник ресурсов: пресные воды суши, тесно связанные с атмосферой, и соленые воды морских бассейнов, основа которых — Мировой океан. Однако в гидрогеологических построениях чаще прибегают к разграничению по способу проникновения вод в горные породы, выделяя инфильтрогенные воды, просочившиеся с поверхности в уже сформировавшуюся породу, и седиментогенные воды, сохранившиеся в породах с момента осадкообразования или являющиеся продуктом литогенеза (при уплотнении и обезвоживании пород).

Из-за различных принципов разделения названные категории экзогенных подземных вод не вполне совпадают. Эти различия следует иметь в виду при пользовании изображенной на рис. 9 схемой, в которой учтены оба диагностических признака экзогенных подземных вод: пути попадания в недра Земли и первоисточник водных ресурсов.



Рис. 9. Генетическая классификация подземных вод.


Инфильтрогенные воды образуются из наземных вод атмосферного происхождения (дождевых, снеговых, речных и озерных), то есть в основном, за исключением вод, просочившихся на дне морей в прибрежные части суши, они относятся к метеогенным. Этот генетический тип вод является основой подземной ветви гидрологического круговорота воды. Проникает она в недра Земли путем просачивания в жидкой фазе или в виде конденсации водяного пара в приповерхностных условиях, что и позволяет различать соответствующие генетические разновидности. Лишь очень небольшая часть метеогенных вод (воды озерных бассейнов, захороненных с осадками) относится к седиментогеиным. Инфильтрогенные воды и воды атмосферного происхождения — фактически одно и то же. В наше время эти воды все больше и больше становятся техногенными, так как формируются в ряде мест под влиянием производственной деятельности человека.

Основная масса инфильтрогенных вод, конечно же, — результат просачивания метеорной влаги. Но и конденсация водяных паров играет существенную роль в пополнении ресурсов подземных вод. Вообще, она оказывает влияние даже на питание рек, особенно в таежной зоне.

Еще А. В. Лебедев, изучая процессы конденсации водяных паров в почве, установил, что по сравнению с инфильтрацией они хотя и дают меньше влаги, тем не менее весьма ощутимы — в Одессе на них приходится до 20 % естественного восполнения подземных вод. Получение конденсационных вод для целей водоснабжения практикуется с глубокой древности. На рубеже XIX и XX веков конденсаторы стали использоваться в городах Крыма. Например, конденсатор, построенный инженером Ф. И. Зибольдом на вершине горы в Феодосии, в 1912 году давал до 0,3 литра воды в сутки от 1 кубического метра гальки, из которой слагался конденсатор. На некоторых морских островах, где отсутствуют подземные воды, конденсаторы — практически единственный источник получения питьевой воды, если не считать опреснителей, которые пока дают очень дорогую воду.

Возобновление подземных вод в результате конденсации влаги требует таких условий: во-первых, значительное колебание температуры на поверхности почвы; во-вторых, наличие разности давлений водяных паров воздуха и водяных паров в конденсаторах; в-третьих, размер, форма, расположение и «начинка» конденсатора (лучшей «начинкой» служат щебенистый грунт или трещиноватые породы).

При соответствующем подборе оптимальных условий гидрогеолог В. В. Климочкин в горных массивах Забайкалья и аллювиальных равнинах Якутии получал в среднем литр воды в сутки с квадратного километра площади. Другими словами, подземный сток местами лишь в два-три раза превышает долю конденсационных вод.

Седиментогенные воды, которые иногда называют ископаемыми, погребенными или реликтовыми, долго не соприкасались с атмосферой, иными словами, длительное время были исключены из гидрологического круговорота воды и участвовали в геологическом круговороте. Они были увлечены в недра Земли при осадкообразовании в виде остаточных растворов или отжаты при уплотнении горных пород. Одновозрастные с вмещающими породами воды называются сингенетическими («син» — одновременно). Есть и другой вид — эпигенетические («эпи» — после) воды, то есть отжатые в процессе литогенеза из перекрывающих или подстилающих толщ, затем мигрировавшие из более молодых осадочных пород в более древние или, наоборот, из древних в молодые. Они «моложе» или «древнее» вмещающих пород; главная же их особенность в том, что они образовались после седиментации.

Поскольку осадконакопление с захоронением ископаемых вод происходит главным образом в морских бассейнах, почти все седиментогенные подземные воды по происхождению талассогенные. Исключение составляют метеогенные подземные воды, увлеченные с осадками из пресноводных озерных бассейнов.

Магматогенные воды, правильнее именуемые мантийногенными, — это те воды, которые впервые вступают в круговорот воды. Молекулы такой воды генерируются в мантии, земной коре или магме из водорода и кислорода. По способу проникновения из мантии и глубоких частей земной коры они образуют вулканические воды, отщепляемые от магмы по мере ее подъема и остывания, и сквозьмагматические газово-жидкие растворы, которые представляют сплошной восходящий поток из очагов, где зарождается магма. Последняя разновидность вызывает, например, гранитизацию.

Метаморфогенные воды в той или иной степени связаны с экзогенными и эндогенными первоисточниками, они появляются в ходе метаморфизма за счет связанной воды осадочных или магматических пород. Обезвоживание минералов идет обычно вблизи магматических очагов или на больших глубинах, причина его — повышение температуры и давления. Такие воды снова (восстановленные из осадочных пород) или впервые (возрожденные из магматических пород) вступают в гидрологический круговорот. Источник метаморфогенных вод — кристаллизационная вода минералов или газово-жидкие включения в них. Нередко процессы дегидратации (например, при переходе гипса в ангидрит) могут иметь региональный характер, продолжаться длительное время и вызывать образование крупных скоплений подземных вод.

Из названных нами генетических разновидностей в «чистом» виде, пожалуй, встречаются только просочившиеся (с ними обычно имеют дело на глубинах до 2 километров) да сингенетические (в молодых артезианских бассейнах, недавно вышедших из-под Уровня моря) воды. Остальные разновидности, как правило, мы находим в смеси с другими, преимущественно просочившимися, водами, поскольку сразу после образования они смешиваются. У некоторых ученых наличие магматогенных вод вообще вызывает сомнение.

Тенденция исторического развития подземных водоносных систем сводится к вытеснению седиментогенных и магматогенных вод просочившимися сверху метеорными водами. Иногда в замещении участвуют и метаморфогенные воды. Поэтому даже в глубоких горизонтах платформенных впадин или очагах вулканической деятельности находится смесь подземных вод различного происхождения. К ней, например, относятся так называемые гидротермы — нагретые рудоносные растворы, формирующиеся из магматогенных, инфильтрогенных, седиментогенных и метаморфогенных разновидностей подземных вод. Точно так же смешанное седиментационно-инфильтрационное происхождение обычно имеют рассолы глубоких горизонтов осадочных толщ. Это, разумеется, не исключает обнаружения гидротерм в той или иной степени ювенильного происхождения, а среди глубоких горизонтов осадочной оболочки — седиментогенных вод.

Нептун или Плутон! Когда речь заходит о седиментогенных и магматогенных водах, вспоминаются естествоиспытатели прошлого. Уже они называли сторонников морского происхождения воды в Земле «нептунистами» (от Нептуна — бога морской стихии). Их противников, находивших у подземных вод магматическое начало, стали именовать «плутонистами» — в честь владыки подземного мира Плутона.

Сейчас спор между защитниками той и другой точек зрения направлен в русло поисков диагностических признаков. Тем не менее встречаются крайние взгляды. Уже отмечалось, что идеи Э. Зюсса сравнительно недавно возродил на новой основе упоминавшийся уже В. Ф. Дерпгольц, взгляды которого применительно к подземным водам глубоких горизонтов (так называемой «гидрохлоросфере») в последнее время разделяют некоторые гидрогеологи. Есть и последовательные «нептунисты», к числу которых принадлежат, скажем, профессор Е. В. Посохов и доктор наук Е. А. Басков — мои старые знакомые по дискуссии о происхождении концентрированных рассолов Сибирской платформы.

Рассолы[2] Сибирской платформы и их аналоги — пробный камень для шлифовки представлений о появлении воды в глубоких горизонтах соленосных толщ. Они своеобразны по составу, в котором преобладают хлориды кальция и содержатся в повышенных количествах многие химические элементы — калий, стронций, бром и т. д. Степень минерализации их самая высокая — солей в них бывает больше, чем воды, подчас 600 граммов в литре (рис. 10).



Рис. 10. Кристаллизация солей из предельно насыщенного рассола Балыхтинской скважины 5 (юг Сибирской платформы).

Стадии кристаллизации: а — осадок при температуре +20 °C, б — то же при снижении температуры до +10 °C, в — то же, при охлаждении до 0 °C. Над осадком слой рассола с плавающими кристаллами солей (г), сверху нефтяная пленка (0).


Так вот эти рассолы, в особенности их состав, Дерпгольц и его сторонники связывают с привносом веществ из мантии. И для этого, кажется, есть основания: в конце палеозоя — начале мезозоя на Сибирской платформе происходили грандиозные излияния трапповой магмы. Вместе с ней поступали в осадочный чехол магматогенные воды и продукты вулканической деятельности, которые могли сформировать «гидрохлоросферу».

У Посохова и Баскова взгляды, кстати, далеко не одинаковы: первый считает такие рассолы наследием древних «хлор-кальциевых» морей, а второй, вслед за М. Г. Валяшко, И. К. Зайцевым и другими «нептунистами», — продуктом преобразования «обычной» морской воды, хотя они сходятся в том, что рассолы одновозрастны с вмещающими соленосными породами. С этих позиций хлоридные кальциевые рассолы Сибирской платформы можно считать и неизмененным реликтом бассейнов осадконакопления, и «маточной» рапой, сгущенной в процессе галогенеза до стадии выпадения калийно-магнезиальных солей (табл. 5), в которой затем магний был эквивалентно заменен на кальций породы. Основания для первой и второй точек зрения, таким образом, имеются. Более того, приуроченность концентрированных рассолов исключительно к регионам с мощными соленосными толщами заставляет считать галогенез первоисточником таких рассолов.



Наконец, большая группа гидрогеологов — среди них автор этих строк — усматривает тут смесь вод различного генезиса, в которой ископаемые рассолы в той или иной степени замещены проникшими с поверхности водами; в них наверняка также есть метаморфогенные и ювенильные компоненты. Седиментогенно-инфильтрогенные гипотезы не менее разнообразны, но объединяет их то, что они не отрицают в начальной стадии влияния ионно-солевого комплекса бассейнов осадконакопления на рассолы и в то же время учитывают последующее их преобразование в системе вода — порода, обязанное главным образом деятельности инфильтрогенных вод.

Точно так же противоречивы взгляды на происхождение термальных вод в областях современного вулканизма или неотектонической активизации. Одни защищают ювенильный генезис, другие — инфильтрационный, третьи большую роль отводят метаморфическим компонентам.

Кто же прав? Почему такое разнообразие мнений? Да потому, что пока нет надежных показателей разграничения первоисточников таких вод. В каждой из точек зрения акцент делается лишь на какие-то определенные критерии, но не учитываются другие, порой не менее важные. Поэтому в основе диагностики должен быть комплекс методов, хотя и в этом случае — а такой подход наиболее объективен — еще не получается однозначный ответ на поставленный вопрос: Нептун или Плутон?

Диагностика генетического облика подземных вод опирается прежде всего на палеогидрогеологические реконструкции, цель которых — воссоздать историю подземной гидросферы, в частности конкретных бассейнов подземных вод. Задача, прямо скажем, трудная, так как следы гидрогеологической истории бывают стерты последующими преобразованиями. Поистине по осколку приходится восстанавливать фреску.

Тем не менее без исторического анализа невозможно понять закономерности формирования подземных вод, их связь с геологическими процессами и осмыслить современную гидрогеологическую обстановку.

«Настоящее — ключ к понимаю прошлого» — таков принцип актуализма, лежащий в основе палеогидрогеологических реконструкций. Иначе говоря, на примере современной деятельности подземных вод воссоздаются процессы, имевшие место в далеком прошлом. При этом обязательно следует обращать внимание на эволюцию геологических процессов, то есть изменение их интенсивности и направленности во времени.

Нельзя механически пользоваться принципом актуализма. Выдающийся советский геолог академик А. Л. Яншин в последние годы успешно развивает идею эволюции геологических процессов, что представляет одну из важнейших проблем теоретической геологии. Эволюция геологических процессов находит выражение в неповторимом своеобразии прошлых геологических эпох, изменении состава гидросферы, характера осадочного породообразования и метаморфизма, принципиально новых обстановках тектономагматической активизации. Наблюдаются и необратимые явления (развитие биосферы, радиоактивный распад и т. д.).

Когда речь заходит об эволюции геологических процессов, необходимо учитывать, что на протяжении геологической истории менялись не физико-химические закономерности, которые по крайней мере в последние 500–1000 миллионов лет были одинаковыми, а эволюционировали условия их реализации на поверхности и в недрах Земли. Неизменными эти процессы можно считать (да и то условно!) лишь для относительно коротких отрезков геологической истории. Вот это-то и дает возможность использовать принцип актуализма.

Как показали А. Н. Семихатов и А. А. Карцев, в общем случае развитие подземной водоносной системы происходит циклически. Гидрогеологический цикл — отрезок истории, который включает такиа этапы:

седиментационный — погружение, осадконакопление и отжатие из осадков седиментогенных вод;

инфильтрационный — поднятие резервуара и внедрение инфильтрогенных вод;

магматический (точнее тектономагматический) — образование расколов, внедрение магмы и отщепление магматогенных вод.



Рис. 11. Схема питания «молодого» (то есть недавно освобожденного из-под уровня моря) бассейна пластовых вод.

1 — инфильтрационное питание за счет просачивания метеорных вод; 2 — элизионное питание в результате выжимания из уплотняющихся глин седиментогенных вод; 3 — эндогенное питание ювенильными флюидами и метаморфогенными водами; 4 — фронт внедрения инфильтрогенных вод; 5 — водоносные песчаные отложения; 6 — глинистые водоупоры; 7 — кристаллический фундамент.


Цикл бывает неполным, в частности, магматический этап встречается реже двух первых. Питание недавно высвободившегося из-под уровня моря бассейна пластовых вод показано на рис. 11.

На первый цикл накладывается второй, третий… Резервуар подземных вод, вначале развивающийся как единое целое, может распасться на участки, которые будут развиваться разными путями. Нередко отжатие ископаемых вод в глубоких горизонтах продолжается при континентальном режиме, а верхние горизонты в это время вовлекаются в инфильтрационный водообмен. Сложное воздействие оказывают тектонические перестройки.

Чтобы проследить изменения во времени, приходится учитывать, с одной стороны, условия протекания геологических процессов в прошлом и, с другой, — следы геологической деятельности подземных вод. Для установления их генетического облика прежде всего проводится структурно-палеогидрогеологический анализ. Уже он в первом приближении позволяет судить, как развивалась рассматриваемая подземная водоносная система.

Далее прибегают к палеогидрогеодинамическому анализу, который по интенсивности водообмена в прошлом раскрывает количественные соотношения между водами разного генезиса, поступавшими в резервуар. Иногда удается достаточно точно рассчитать процентное содержание той или другой разновидности. Например, В. В. Аверьев определил, что в гидротермальной системе Долины Гейзеров на Камчатке доля ювенильной составляющей достигает 25 %, а В. Н. Корценштейн установил преобладание инфильтрогенных вод в глубоких горизонтах бассейнов Предкавказья и Средней Азии. Можно определить и объем дегидратационных вод, высвобождающихся, например, при переходе гипса в ангидрит или минерала монтмориллонита в гидрослюды. На Сибирской платформе выделившаяся при обезвоживании гипса пресная вода очень сильно разбавила маточную рапу.

Другой метод — использование палеогидрогеохимических данных. В качестве показателей здесь служат растворенные в воде специфические химические элементы и их отношения друг к другу. Широкое применение получили, в частности, натрий-хлорный и хлор-бромный коэффициенты.

Названные показатели нельзя считать бесспорными, как не является однозначным даже такой критерий, как возраст подземных вод.

Понятие «возраст подземных вод» сформулировал А. М. Овчинников, подразумевая под ним среднее время пребывания воды в земных недрах. В глубоких горизонтах это понятие относится к смеси вод и характеризует разбавление одних генетических разновидностей другими.

Довольно точно датируется с помощью радиогенных изотопов время пребывания подземных вод в верхних горизонтах: по тритию — до 50 лет, радиоуглероду — до 25 тысяч лет, и т. д. В глубоких горизонтах возраст вод измеряется миллионами лет. Тогда для его определения используют гелиево-аргоновое отношение растворенных газов, оно отражает интенсивность водообмена.

…Передо мной оттиск статьи А. М. Овчинникова, который я получил незадолго до его смерти. В жизни Александр Михайлович был очень общительным человеком, самую сложную научную идею всегда облекал в остроумную форму. На оттиске его рукой начертано: «Возраст подземных вод определить легче, чем возраст женщины». И автор не преувеличивал: тритиевый метод датирует возраст подземных вод с точностью до 1–2 лет.

Тритиевый метод успешно был применен при прогнозировании водопритоков в Северо-Муйский тоннель — самое большое сооружение на БАМе. Этот тоннель интересен во многих отношениях, главным образом по сложности геолого-гидрогеологической обстановки. Вода к горным выработкам поступает из многочисленных разломов сверху и снизу: в первом случае она очень холодная, в последнем — ее температура превышает 40 °C. Водопри-токи огромные, порой носят катастрофический характер.

С помощью определения трития установлено, что холодные воды наиболее мощных зон разломов, по которым приподнята центральная часть Северо-Муйского хребта, питаются преимущественно в весенне-летнее время — они имеют возраст меньше одного года. Реки и озера в формировании водопритоков к горизонтальным выработкам пока не участвуют. Что же касается терм, то они отличаются от поверхностных и холодных подземных вод более низкой концентрацией трития — их возраст исчисляется десятилетиями. Эта информация позволила дополнить традиционные методы прогноза водопритоков к горным выработкам.

Продолжительность водообмена в глубоких горизонтах определяется только ориентировочно. Тут важно другое. Если возраст вод и пород совпадает, то мы имеем дело с ископаемыми водами. Чем возраст вод меньше, тем сильнее разбавление просочившимися водами. В артезианских бассейнах, подвергшихся тектоническим перестройкам, ископаемые воды чаще всего вытеснены полностью.

При изучении подземных вод глубоких горизонтов используются главным образом стабильные изотопы, слагающие молекулу воды: данные по изотопному составу водорода и кислорода оказывают неоценимую помощь в диагностике генетического облика подземных вод. Представительную информацию об источнике растворенных веществ содержат изотопы гелия, углерода, серы, стронция, кремния, радиоактивных элементов.

Изотопы водород-2 (дейтерий) и кислород-18 несут в себе информацию о происхождении молекулы воды и отражают ее геологическую историю. Их содержание в исследуемом образце подземных вод позволяет сравнительно быстро найти исходную генетическую разновидность. Правда, надо обязательно учитывать возможное фракционирование и изотопный обмен в подземной гидросфере.

На рис. 12 показан изотопный состав первоисточников подземных вод в виде трех эталонов: за исходный состав инфильтрогенных вод приняты метеорные воды, содержание дейтерия и кислорода-18 в которых на земной поверхности изменяется от тропиков к полюсам по закону прямой линии; эталоном ископаемых вод служит стандарт среднеокеанической воды; гипотетический образец ювенильной воды получен американскими геохимиками по результатам изучения проявлений вещества глубинных зон Земли.



Рис. 12. Диаграмма изотопного состава водорода и кислорода  подземных вод различного генетического облика.

1 — стандарт среднеокеанической воды (SMOW); 2 — гипотетический  образец ювенильных вод; з — линия наземных вод; контуры: 4 — седиментогенных вод в сравнительно молодых артезианских бассейнах, 5 —  концентрированных рассолов Сибирской платформы, 6 — термальных вод Прибайкалья; линии: 7 — углекислых вод Западной Чехии, 8 — парогидротерм Камчатки и Курил.


Нанесем теперь на диаграмму результаты определения дейтерия и кислорода-18 в изучаемых образцах подземных вод (см. рис. 12). Ископаемые воды сохранились в сравнительно молодых бассейнах. Упомянутые выше концентрированные рассолы Сибирской платформы располагаются между эталонами ископаемых и инфильтрогенных вод, представляя, таким образом, смесь этих первоисточников. Смесью являются также фумаролы и конденсаты вулканических извержений на Камчатке и Курилах. А вот в формировании ресурсов термальных вод Прибайкалья ювенильная составляющая, кажется, не принимала участия.

Когда мне пришлось посетить Чехословакию, то, конечно же, я побывал на знаменитом курорте Карловы Вары и отобрал из здешних термальных источников пробы воды на изотопный анализ. Ведь именно «Карлсбадскому шцруделю», как тогда называли главный источник Карловых Вар, Э. Зюсс приписывал ювенильное происхождение. С нетерпением ждал я изотопных определений. Мнение великого геолога не подтвердилось. Термы Карловых Вар, как это можно видеть из рис. 12 и табл. 6, оказались поверхностного происхождения — по концентрации дейтерия и кислорода-18 они не отличаются от наземных вод района и ничего общего не имеют с гипотетическим стандартом ювенильных вод. На метеорную их природу указывает также наличие в углекислых водах трития, достигающее 10–15 тритиевых единиц.



Однако ювенильное происхождение в термальных водах могут иметь некоторые компоненты их состава — углекислота, сульфат, гелий, фтор, стронций и т. д. И не только на Камчатке или в Карловых Варах. В термах Прибайкалья, как свидетельствуют изотопные определения, гелий появился главным образом из мантии.

Изотопный состав воды и растворенных веществ — действенный инструмент для диагностики генетического облика подземных вод. С его помощью гидрогеологи получили возможность решать задачи, которые не доступны другим методам. И не только гидрогеологические, но и задачи общегеологического плана.

Академик А. В. Сидоренко и кандидат геолого-минералогических наук Ю. А. Борщевский, исходя из концепции о ведущей роли экзогенных процессов в эволюции вещества земной коры, считают, что наземная гидросфера и литосфера находились уже 1000 миллионов лет назад в изотопно-кислородном равновесии. Именно вода оказывает решающее влияние на изотопный состав кислорода и других химических элементов осадочно-метаморфических пород. Земная кора, согласно их построениям, представляет открытую систему в отношении метеорных и морских вод, которые, проникая на глубины в несколько километров, активно участвуют как в гидротермальном рудообразовании, так и во многих других эндогенных процессах — метаморфизме, гранитизации и т. д. Другими словами, в земной коре происходит не только обмен «легких» изотопов кислорода поверхностных вод с «тяжелыми» изотопами больших глубин, но и непрекращающийся обмен вещества, в особенности водообмен, который скорее всего распространяется вплоть до мантии. Во всяком случае, он активно себя проявляет в зоне метаморфизма.

…Недавно я увидел у своего хорошего друга на книжной полке «Легенды и мифы Древней Греции». Взял книгу почитать внуку. Вот как там описывается появление Земли и Неба.

Вначале существовал лишь вечный, безграничный, темный Хаос. С него все началось, в том числе произошла и богиня Земли — Гея. Широко раскинулась она, могучая, дающая жизнь всему, что находится на Земле. Гея породила голубое Небо — бога Урана, который воцарился в мире.

Уран — дед Зевса — был у древних греков олицетворением начала, наделяющего Землю теплом и влагой, посредством которых пробуждаются творческие силы Земли.

Так все возвращается на «круги своя». Во второй половине XX века на новой фактологической основе подтвердилась казавшаяся наивной легенда древних греков относительно роли незаслуженно забытого бога Урана. Ему, то есть проникшим сверху экзогенным водам, принадлежит ведущая роль в геологических процессах, а ресурсы подземных вод, как мы видели, даже в царстве Плутона в значительной мере сформированы за счет вод метеорного происхождения.

И если уж мыслить мифическими категориями, то мы должны вспомнить богиню ключевой воды и источников. Была, оказывается, у древних римлян и такая. Звали ее Венилия, она была женой Нептуна.

Зональность подземной гидросферы. Одна из основных закономерностей, характерных для Земли, — зональность. Она проявляется, например, в ее сферическом строении. Гидросфера — одна из таких оболочек. Четкая зональность наблюдается в подземной гидросфере и характерна для подземных вод.

Синтез знаний о строении земной коры и мантии позволяет дать общую схему изменения фазового (лед — вода — пар) состояния Н2О по мере углубления в земные недра. В соответствии с представлениями гидрогеологов из Геологического института АН СССР (Ф. А. Макаренко, В. И. Кононов и другие) подземная гидросфера состоит из следующих слоев, представляющих собой гидрофизические зоны:

слой «твердой» воды — ограничивается гидроизотермой фазового перехода «лед — вода» и имеет мощность до километра или несколько больше;

слой «жидких структурированных» вод — заключен между изотермами фазовых переходов «лед — вода» и «вода— пар»? охватывает 80 % земной коры. Температура достигает 450°, а давление 25 кбар. Мощность изменяется от 30 (области докембрийской складчатости) до 8 километров (островные дуги). В областях современного вулканизма нижняя граница этого слоя может располагаться на меньших глубинах; и

слой уплотненного флюида — располагается между изотермами 450 и 700°. Здесь водородные связи непрочны и молекулы воды становятся свободными. Благодаря высоким давлениям (до 50 кбар), флюид находится в уплотненном состоянии. Мощность 3–80 километров, а максимальная глубина достигает 160 километров, но под островными дугами не превышает 11 километров.

Рассмотренная зональность верна для свободных вод. Формы существования физически и химически связанных вод также определяются термодинамическими параметрами. С глубиной количество связанных вод уменьшается, и уже в слое уплотненного флюида они полностью переходят в свободное состояние, за исключением некоторой части кристаллизационных и конституционных вод, удерживаемых до температуры 700– 1000 °C.

Подземные воды принадлежат слою жидких «структурированных» вод, который по особенностям воздействия на него физико-географических, геологоструктурных и термодинамических условий весьма разнороден.

Для подземных вод характерно обособление естественно-исторических зон в зависимости от широты местности и абсолютной отметки залегания. Поэтому различают: широтную (климатическую) зональность, присущую главным образом подземным водам приповерхностной части, и вертикальную (геологическую) зональность, которая прослеживается сверху вплоть до глубоких горизонтов подземных вод. Вертикальная зональность может быть глубинной — в бассейнах пластовых вод или высотной — в массивах трещинных вод.

Не касаясь широтной зональности, которая зависит исключительно от географической широты местности, сосредоточим внимание на вертикальной зональности — закономерности, определяющей особенности размещения цодземных вод в земной коре.

С поверхности вглубь Земли уменьшаются трещиноватость и пористость горных пород, что отчетливо сказывается на скорости движения подземных вод и интенсивности возобновления их ресурсов. Изменяются также степень минерализации, ионно-солевой и газовый состав, температура подземных вод. На эту закономерность первым обратил внимание В. И. Вернадский, а систематизация сведений о таких изменениях позволила советским гидрогеологам Н. К. Игнатовичу, Б. Л. Личкову и Ф. А. Макаренко создать учение о вертикальной гидрогеологической зональности. Рассмотрим зональность бассейнов пластовых вод, на примере которых вертикальные изменения видны значительно лучше, чем в резервуарах трещинных вод.

По гидрогеодинамическим особенностям в бассейнах пластовых вод различают следующие вертикальные зоны: интенсивного (активного) водообмена, глубина которой достигает 0,3–0,5 километра и отвечает региональному эрозионному врезу; для нее характерны наиболее высокие скорости движения подземных вод (средний темп возобновления ресурсов оценивается годами и столетиями) и тесная связь с поверхностными водами;

затрудненного (замедленного) водообмена, находящаяся ниже базисов дренирования, где вследствие уменьшающейся трещиноватости и пористости пород скорости движения понижены (темп водообмена — десятки и сотни тысяч лет) и связь с поверхностными водами затруднена;

весьма затрудненного (пассивного) водообмена, располагающаяся в наиболее глубоких частях впадин (глубже 1,5–2 километров) и отличающаяся возобновлением ресурсов подземных вод в масштабе геологического времени (темп водообмена — миллионы лет).

Отсюда вывод: крупные скопления подземных вод надо ожидать на сравнительно небольших глубинах в зоне интенсивного водообмена, то есть преимущественно среди крупнозернистых, обломочных или трещиноватых пород.

По степени минерализации и ионно-солевому составу подземных вод в вертикальном разрезе земной коры различаются три гидрогеохимические зоны:

верхняя — пресных вод (минерализация менее 1 грамма на литр) мощностью обычно 0,3–0,6 километра и с преобладанием в составе вод гидрокарбонат-иона;

промежуточная — соленых вод (с минерализацией 1– 35 граммов на литр), в составе которых часто доминирует сульфат-ион; и

нижняя — рассолов высокой минерализации (более 35 граммов на литр) преимущественного хлоридного состава.

Пригодные в качественном отношении для целей водоснабжения питьевые пресные воды, таким образом, располагаются в верхней части разреза, а глубже они сменяются минерализованными водами.

С глубиной меняется и газовый состав подземных вод: газы воздушного происхождения (кислородно-азотные) постепенно заменяются газами глубинной обстановки, в которой могут формироваться скопления углеводородов. Что же касается температуры, то она по вертикали возрастает: в глубоких горизонтах крупных артезианских бассейнов и областях активного вулканизма температура подземных вод значительно превышает 100 °C. В этом же направлении изменяются содержание и формы существования живого вещества в подземной гидросфере.

Нет правил без исключения. В вертикальной зональности подземных вод они также есть и называются аномалиями. Аномалии нарушают общую закономерность, будучи связаны с различного рода отклонениями: в фильтрационных свойствах пород, наличием источника растворенных веществ или водовыводящего разлома. Гидрогеологические аномалии часто представляют месторождения пресных или минеральных вод.

Природу вертикальной зональности подземных вод долгое время не удавалось выяснить. Назывались многие причины. Попытки связать ее, например, с гравитационными силами Земли не имели успеха: этим можно объяснить особенности, но не все виды зональности в целом.

Направленность у перечисленных видов зональности одинакова — смена поверхностных условий глубинными. Поэтому причины, ее вызывающие, должны заключать в себе совокупность природных факторов и отражать противоборство разнонаправленных тенденций. На это мог обратить внимание ученый, мыслящий оригинально, масштабно и диалектически. Такой была недавно скончавшаяся доктор геолого-минералогических наук В. А. Кротова, успешно разрабатывавшая теоретические и философские проблемы гидрогеологии. Вертикальную зональность подземных вод Валентина Артемьевна понимала как результат длительной борьбы двух противоположно направленных начал: поверхностного, представляющего комплекс физико-географических, биологических и других экзогенных факторов и связанного с внедрением вод инфильтрации в недра Земли, выносом химических элементов из пород, низкими температурами и давлениями, и глубинного, складывающегося из воздействия эндогенных факторов и характеризующегося хорошей закрытостью недр, уплотненностью пород, накоплением в подземных водах химических элементов, высокими температурами и давлениями.

Взаимодействию этих двух начал подчинены все виды вертикальной зональности подземных вод, да и подземной гидросферы в целом. Если попытаться перевести это на язык мифологии, то можно сказать, что в основе вертикальной зональности находится противоборство Урана и Плутона, которые не могут одолеть друг друга. Тут-то и кроется причина появления гидрогеологической зональности.

Классификация подземных вод. В зависимости от целевого назначения существуют различные классификации и группировки подземных вод — общие и специализированные. К общим относится, в частности, их генетическая классификация (см. рис. 9) и классификация по так называемым «условиям залегания». Эта терминология, несмотря на явную ошибочность, к сожалению, укоренилась. На самом деле — мы об этом уже говорили — подземные воды не «залегают», а движутся. Поэтому правильнее называть последнюю классификацией по характеру размещения подземных вод в земной коре.

Специализированные классификации (по составу, минерализации, напору и т. д.) мы рассматривать не будем — это не наша задача. Уделим внимание лишь наиболее общей и, наверное, самой важной классификации подземных вод — по характеру их размещения в земной коре.

Подобных схем на протяжении столетия предлагалось несколько десятков. G накоплением знаний о воде земных недр классификации совершенствовались. Однако и раньше и теперь сам подход к выделению подземных вод был двояким: в одних классификациях к подземным водам относились все воды земных недр (О. Мейнцер, Н. И. Толстихин), в других — собственно подземные воды (А. Добре, И. Гааз, С. Н. Никитин, Ф. П. Саваренский, О. К. Ланге, А. М. Овчинников).

Что считать подземными водами? Мы уже называли их свободными водами Земли. Наиболее обоснованным, пожалуй, остается определение Ф. П. Саваренского, которое было дано в 1935 году. К подземным водам в собственном смысле он относил «капельно-жидкую воду, заполняющую пустоты и поры в горных породах, способную к перемещению в них и вытеканию или извлечению из них». Аналогичное определение имеется в государственных стандартах некоторых европейских стран. Да и вообще только так понимают подземные воды, когда говорят об их движении, составе или использовании в хозяйственных целях. Другого понимания нет. Это определение прочно вошло в науку и практику, к нему трудно добавить что-либо менее спорное.

Если придерживаться изложенного определения, то применительно к размещению подземных вод в земной коре с общегеологических позиций прежде всего следует различать подземные воды суши и подземные воды, находящиеся под морскими или океаническими акваториями. Вся гидрогеология прошлого — это гидрогеология суши. «Морскую» гидрогеологию тольконачинают изучать. Раньше в классификациях такое различие совсем не учитывалось. В предлагаемой классификации (табл. 7) на нем базируется разделение групп — подземных вод суши и подземных вод под морями и океанами.

Различием отделов служит степень насыщения горных пород свободной водой с выделением на континентах зоны аэрации и зоны насыщения. Типы — «подвешенные» (по О. К. Ланге), безнапорные и напорные — выделены на основе гидравлических признаков. Классы характеризуют основные разновидности подземных вод по размещению в земной коре. На континентах это — верховодка, грунтовые воды, артезианские воды (находятся под гидростатическим напором) и глубинные воды (испытывают воздействие геостатического давления и эндогенных сил). Последнюю разновидность раньше также не выделяли, хотя необходимость ее обособления совершенно очевидна, поскольку она установлена как в глубоких частях осадочных толщ артезианских бассейнов, так и в разломах глубокого заложения.

В морях и океанах различаются два класса подземных вод — связанные гидравлически с континентом и не связанные с ним. Первые — аналоги артезианских вод, вторые — глубинных, хотя субмаринные условия на те и другие накладывают свой отпечаток.



Кроме классов подземных вод, в таблице 7 приведены и подклассы, характеризующие водно-коллекторские свойства пород. Опущены особые условия — они для территории СССР определяются наличием многолетнемерзлых пород и современного вулканизма. Не исключено выделение в особые условия подземных вод аридной зоны.

Предлагаемая классификация подземных вод опирается на классические схемы С. Н. Никитина (1900 год), О. Мейнцера (1923 год), О. К. Ланге (1931 год) и А. М. Овчинникова (1949 год). В ней по возможности учтена новейшая информация о распределении подземных вод в земной коре.

Значение этой классификации не столько теоретическое, сколько практическое, хотя научная новизна вряд ли вызывает сомнение. Главное — она позволяет более целенаправленно, с учетом современного уровня знаний о разновидностях подземных вод изучать гидрогеологические закономерности как для суши, так и для океана.

КАК ПОЯВИЛИСЬ РАСТВОРЕННЫЕ В ВОДЕ ВЕЩЕСТВА

Дождевая вода, когда горы пропивает, тончайшие земляные частицы, из которых камни осе-даются, в себе разводит и от тех силу получает другие тела претворять в камень.

М. В. Ломоносов. О слоях земных

Состав подземных вод отражает геологическую историю района.

А. М. Овчинников
Каким образом сформировался состав подземных вод. Когда говорят о генезисе подземных вод, принято различать две группы вопросов: родословную собственно воды как материального тела и формирование состава подземных вод. На первой из них мы уже останавливались. Если она представляет в этом клубке проблем «количественную» сторону, то вторая будет, скорее всего, «качественной» стороной. Обе группы вопросов тесно связаны и неотделимы друг от друга, что уже было показано, когда мы рассматривали происхождение подземной гидросферы. Но в известной мере они имеют и самостоятельное значение, так как растворитель и растворенные в воде вещества на протяжении геологической истории претерпевают отнюдь не сходное развитие.

Вода земных недр содержит многие химические элементы в виде ионно-солевого комплекса, газов, органического вещества, коллоидов. Это могут быть ультра-пресные или рассольные воды различного ионно-солевого состава, содержащие углекислый газ, метан, сероводород и т. д. Столь разнообразный состав формируется в результате взаимодействия с веществом земной коры или привноса из других геосфер. Характер этого взаимодействия академик В. И. Вернадский изобразил в виде равновесной системы


вода ⇄  порода ⇄ газ ⇄ живое вещество.


Растворенные вещества попадают в подземную гидросферу или в «готовом» виде (из атмосферы, океанов и морей, за счет летучих компонентов магмы), или в результате сложного обмена с породами и минералами, газами и живым веществом. Состав подземной гидросферы постоянно изменяется. Миграция, то есть концентрирование или рассеяние, представляет итог различных форм движения, которые приводят к преобразованиям внутри упомянутой уже равновесной системы Вернадского и, по существу, описывается этой «формулой».

Формирование состава подземных вод долгое время не находило обобщающей формулы, которая бы всесторонне раскрывала его закономерности. Исследователи обычно рассматривали одни из них, — главнейшие с их точки зрения, — упуская из внимания другие, не менее важные, как это оказывается при внимательном анализе. Лишь в середине XX века Г. Н. Каменский, А. М. Овчинников, Е. В. Посохов, К. Е. Питьева и некоторые другие среди нагромождения причин и следствий нашли последовательный подход к познанию закономерностей формирования состава подземных вод. В чем же он заключается?

Как известно, чтобы познать сложное явление, необходимо изучить отдельные его стороны, не отрывая и не изолируя их друг от друга. Применительно к генезису растворенного вещества отдельными сторонами или составными частями, по мнению автора этих строк, следует считать, во-первых, факторы, то есть движущие силы (причины), вызывающие изменение состава подземных вод, во-вторых, процессы — следствия факторов, которые создают или преобразуют состав, и, в-третьих, обстановки — природный фон, среду существования подземных вод, от них зависят интенсивность воздействия факторов и направленность процессов.

По существу, из этих трех составных частей складываются закономерности формирования состава подземных вод. С их помощью, таким образом, учитываются причины, следствия и влияние среды. Особенно хочется подчеркнуть причинную обусловленность и взаимосвязь рассмотренных ингредиентов, которые, несмотря на известный формализм, представляют основу для комплексного сравнительно-исторического метода познания закономерностей появления растворенных в воде веществ. Вот этот-то дифференцированный подход как раз и утвердили перечисленные ученые.

Правда, столь оптимистично к факторам, процессам и обстановкам относятся не все гидрогеологи. И не без оснований. Ведь даже провести строгую грань между ними не всегда возможно. Однако при умелом использовании они могут стать «лучом», который позволяет в «темном царстве» подземной гидросферы увидеть многие непознанные закономерности.

Причины формирования состава подземных вод первым обстоятельно исследовал в 60-х годах новочеркасский профессор Е. В. Посохов. Как всякая систематизация, его систематизация причин — факторов имела не только достоинства, но и недостатки. Вот, в частности, один из существенных: среди факторов оказались некоторые процессы. Тем не менее Ефим Васильевич сумел сделать принципиально новое: показать роль природных и искусственных факторов в формировании состава подземных вод.

Значение каждого из факторов (табл. 8) далеко не равноценно. Различают прямые факторы, непосредственно воздействующие на состав воды, и косвенные, определяющие условия, в которых происходит взаимодействие вещества земной коры с водой.



Описание каждого фактора заняло бы слишком много места и утомило бы читателя. Вероятно, доходчивее будет их сравнительная характеристика.

Для формирования состава неглубоких подземных вод первостепенное значение имеют физико-географические, биологические и антропогенные факторы. Влияют, конечно, и другие, но в основном они играют подчиненную роль.

В верхних горизонтах наиболее велико, пожалуй, воздействие климата. Не надо быть естествоиспытателем, чтобы видеть, как разбавляют грунтовые воды интенсивно выпадающие дожди или концентрирует в условиях сухого климата испарение. Одновременно с изменением степени минерализации меняется и состав. Испарение воды гидрокарбонатного состава превращает ее в сульфатные и даже хлоридные рассолы.

Из геологических факторов в верхних горизонтах первостепенное значение имеет вещественный состав пород, особенно когда подземные воды взаимодействуют с легкорастворимыми минералами и породами — каменной солью, гипсом, известняком, доломитом.

Очень интересна роль биологических факторов, прежде всего микроорганизмов. Их влияние на состав подземных вод самое разнообразное: разложение органических веществ и перевод в растворенное состояние углекислоты, восстановление или, наоборот, окисление серы, обогащение органическими кислотами и т. д. Воздействие бактерий на состав подземных вод отмечается как в верхних, так и в глубоких горизонтах.

Многим известны минеральные воды Мацесты. Своими удивительными целебными свойствами они обязаны высокой концентрации сероводорода. Воздействие его на больных поистине изумительное: миллионам сероводородные воды вернули здоровье. Как появился в этих водах сероводород? Загадку долго не удавалось отгадать. Когда же обратили внимание на приуроченность сероводородных вод к разрушенному нефтегазовому месторождению, решение оказалось на удивление простым. Месторождение «съели» бактерии, преобразовав углеводороды в сероводород. Поэтому его и много в воде. К такому выводу после изучения подземных вод Сочи-Мацестинского района пришли гидрогеологи А. М. Овчинников и Ф. А. Макаренко.

Интенсивность концентрирования или рассеяния растворенного вещества подземных вод резко меняется при смене геохимической обстановки, в частности, таких ее параметров, как щелочно-кислотный (pH) или окислительно-восстановительный (Eh) потенциалы, температура и давление. Это приводит к выделению вещества из раствора или, наоборот, переходу его в раствор.

Выделение вещества подземных вод происходит на так называемых геохимических барьерах, под которыми известный советский геохимик А. И. Перельман подразумевает участки резкой смены интенсивности водной миграции химических элементов. Геохимические барьеры образуют ни что иное, как месторождения полезных ископаемых. Вот некоторые из них:

окислительный барьер — смена восстановительных условий окислительными — характеризуется выпадением из подземных вод железа, марганца, серы и других элементов переменной валентности;

восстановительный барьер — противоположный предыдущему — приводит, например, к образованию сульфидных месторождений, а также залежей самородной меди;

кислый барьер появляется, когда щелочная реакция подземных вод переходит в кислую; тогда осаждаются кремний, молибден, ванадий;

щелочной барьер, наоборот, возникает при смене кислой среды на щелочную и вызывает вторичное минералообразование в карстовых полостях;

термодинамический барьер — смена температуры или давления — способствует осаждению кремнезема, кальцита и т. д.

В качестве примера термодинамического барьера можно указать на отложения кремнистого туфа — гейзерита — вокруг термальных источников и известкового туфа — травертина — около мест выхода углекислых вод. Травертиновые поля вокруг источников Кавказских минеральных вод занимают огромные площади.

В глубоких горизонтах тенденции, характеризующие поверхностное начало, не сказываются столь отчетливо на составе подземных вод. Здесь больше проявляют себя факторы, влияние которых обязано геологоструктурным и термодинамическим особенностям, но особое значение имеет фактор времени.

Время — важнейшая координата любого геологического процесса. Влияние его на состав подземных вод многогранно. Его воздействие прежде всего на глубокие горизонты объясняется устойчивостью наследия прошлых геологических эпох (реликтов магматических процессов, ионно-солевого комплекса бассейнов седиментации и т. д.). Из-за пониженной подвижности подземных вод, в отличие от неглубоких водоносных горизонтов, здесь это наследие прошлого сохраняется часто вплоть до наших дней.

Как же оно конкретно проявляется? Это и насыщение углекислотой подземных вод в районах недавней вулканической деятельности, и наличие специфических компонентов в термальных водах, и преимущественно хлоридный состав глубоких минерализованных вод артезианских бассейнов. Более того, в некоторых артезианских бассейнах (в том случае, если они хорошо изолированы сверху и по разломам снизу в них открыт доступ рассолам) подземные воды представлены нацело «гидрохлоросферой». Таков Тунгусский артезианский бассейн; он гидрогеохимически однозонален: ниже 200–300-метрового панциря многолетнемерзлых пород в центральной его части обнаруживаются только хлоридные кальциевые рассолы.

Во всех этих случаях состав подземных вод формируется независимо от вещества вмещающих пород. Вот почему изречение естествоиспытателей древности («Каковы породы, таковы и воды»), казавшееся бесспорным, А. М. Овчинников предложил перефразировать, заменив на ставший крылатым афоризм: «Вода такова, какова геологическая история района».

В заключение характеристики факторов формирования состава подземных вод нельзя не сказать о последней их группе (см. табл. 8). Производственная деятельность человека — так можно кратко назвать существо искусственных факторов.

…Вспоминается XXIII сессия Международного геологического конгресса. Она проходила в Праге летом 1968 года. На открытии конгресса с докладом «Человек как геологический агент» выступил известный специалист по инженерной геологии Р. Леггет: эта проблема наряду с двумя-тремя другими была признана важнейшей в геологии.

Еще В. И. Вернадский и А. Е. Ферсман сравнивали воздействие человека на земные недра с влиянием мощного геологического агента. В наше время эффект антропогенных факторов, пожалуй, превосходит многие геологические процессы. По отношению к составу подземных вод он выражается в засолении мелиорируемых земель, водоносных систем промышленными стоками или ядохимикатами, смешении вод различного состава. В будущем влияние этих факторов на состав подземных вод еще больше возрастет.

Однако производственная деятельность человека вызывает не только загрязнение подземных вод, на чем мы еще остановимся. Воздействие ее на изменение их состава гораздо сложнее и разнообразнее.

Из недр Земли ежегодно извлекается огромное количество химических соединений — нефть, уголь, металлы, соли и так далее, что, конечно же, нарушает естественный баланс в системе порода — вода, вызывая неизбежно дополнительный переход вещества в раствор. Сходный, но с противоположным эффектом процесс наблюдается на берегах водохранилищ. При создании, например, одного из крупнейших в нашей стране водохранилищ — Братской ГЭС — среди прибрежных карбонатных массивов за счет речных вод произошло опреснение подземных вод, что резко усилило карстообразование и вызвало появление провальных форм рельефа.

Процессы, формирующие состав подземных вод, по своему механизму требуют учета прежде всего переноса вещества, его воспроизводства (перевода в раствор) и поглощения (вывода из раствора). Кроме того, есть процессы, сочетающие два последних, а также характеризующие миграцию самой воды (табл. 9).



Различные формы имеет, как мы говорили, движение воды. Но и перенос растворенных веществ осуществляется также по разным законам; основные его виды — диффузия и фильтрация.

Диффузия приводит к выравниванию концентрации растворенных веществ. В подземной гидросфере молекулярные потоки диффузии обязаны главным образом градиенту концентрации. Чисто диффузионные процессы свойственны покоящимся средам. Для коротких отрезков геологической истории такая обстановка присуща зоне пассивного водообмена артезианских бассейнов.

Одним из первых механизм концентрационной диффузии для выяснения закономерностей переноса растворенного вещества использовал доктор геолого-минералогических наук С. И. Смирнов. Проведенные им расчеты дали поразительные результаты. Они показали, что растворенные минеральные вещества могут мигрировать в течение геологического времени на расстояния, измеряемые километрами, и пронизывать всю мощность осадочной толщи, при этом перемещается хорошо ощутимая масса растворенных веществ.

Выводы С. И. Смирнова подтвердили другие ученые, хотя и не в столь категоричной форме. Концентрационная диффузия, как теперь установлено, представляет основной вид перемещения растворенного вещества в глубоких водоносных горизонтах осадочных бассейнов. В существенной мере она вызывает обессоливание седиментогенных вод. И тем сильнее, чем она продолжительнее, то есть чем древнее возраст водовмещающих пород.

Фильтрация, движущей силой которой служит напорный градиент, сочетает механическое (конвективное) и диффузионное перемещение вещества. Этот вид переноса, вероятно, представляют все, но не все, по-видимому, знают, что он происходит двумя «потоками»: макроскопическим и молекулярным, поэтому его называют диффузионно-конвективным массопереносом. Итог такого перемещения — смешение вод различного состава и различной минерализации. В зависимости от объема смешивающихся вод, а также влияния некоторых других условий смешение вод сопровождается активизацией процессов массопереноса, перевода вещества в раствор и вывода его из раствора.

В чем различие процессов, переводящих вещества в раствор, — гидролиза, выщелачивания и растворения?

Представим себе взаимодействие воды с кристаллической породой, скажем, гранитом или гнейсом. Такие породы называют инертными по отношению к выщелачиванию и растворению. Однако и они разлагаются, хотя и медленно (в геологическом понимании!), главным образом путем вытеснения ионом водорода воды иона металла породы. Это и есть гидролиз — процесс, который обычно формирует ионно-солевой состав ультрапресных и пресных вод, содержащих кремнекислоту. Важным условием протекания реакций гидролиза следует считать активный водообмен, обеспечивающий удаление продуктов гидролитического разложения. Тогда процесс идет до полного разложения исходной горной породы.

Грань между выщелачиванием и растворением в значительной мере условна. При выщелачивании порода переходит в раствор частично, растворение же вызывает полное разрушение кристаллической решетки минерала. Подземные воды полностью усваивают лишь немногие соли, отличающиеся высокой растворимостью. По отношению к растворению выщелачивание представляет более общий процесс — его воздействию подвержены все горные породы.

Процессы выщелачивания и растворения стимулируются такими веществами, как кислород, углекислота, серная кислота, которые способствуют предварительному разложению труднорастворимых минералов. В результате выщелачивания и растворения создается состав подавляющей массы пресных и минерализованных вод верхних водоносных горизонтов.

Удаление веществ из раствора обязано преимущественно выпадению их в осадок в виде солей, когда соли достигают предела растворимости. Кристаллизации благоприятствует изменение общей геохимической обстановки за счет концентрирования растворенного вещества, выделения газов, смешения вод разного состава, сдвига термодинамического, кислотно-щелочного и окислительно-восстановительного равновесий.

Хорошей иллюстрацией сказанному может быть выпадение солей из предельно насыщенного рассола, когда в результате смены температуры и давления растворимость солей оказывается выше предела насыщения (см. рис. 9). Пример — упомянутые гейзериты или травертины, отлагающиеся вокруг источников, засоление почв при испарении или вымораживании, а также осаждение растворенных веществ на геохимических барьерах. Таким образом, гидрогенное минералообразование (такое наименование получил этот процесс) сопровождаете существенным изменением состава подземных вод.

При соприкосновении с различными поглотителями (глинами, коллоидами и т. д.) растворенные вещества могут удаляться и из ненасыщенных солями подземных вод. Этот процесс потери их раствором называется сорбцией. Особенно легко сорбируются редкие элементы.

Процессы, сочетающие воспроизводство и поглощение растворенного вещества, носят обменный характер.

Весьма велика роль ионного обмена. Поскольку частицы горных пород имеют преимущественно отрицательный заряд, между подземными водами и вмещающими породами совершается большей частью обменная адсорбция катионами, благодаря чему переходят в раствор кальций или натрий, обменивающиеся на эквивалентное количество соответственно натрия или кальция. Обменно-адсорбционные процессы совершаются главным образом в верхних горизонтах осадочных толщ, однако высокие скорости движения подземных вод для этого неблагоприятны.

В глубоких горизонтах более вероятна обменная абсорбция, заключающаяся в метасоматическом замещении катионов породы с большими ионными радиусами на катионы воды меньших радиусов. С ней связаны доломитизация известняков, альбитизация плагиоклазов или анальцимизация цеолитов, за счет чего подземные воды глубоких горизонтов обогащаются кальцием. Некоторые исследователи этими реакциями объясняют образование хлоридных кальциевых рассолов.

Окислительно-восстановительные и биогеохимические реакции сильно преобразуют растворенные вещества. Обе реакции взаимосвязаны, так как окисление или восстановление почти всегда происходит с участием органических продуктов, и наоборот, биогеохимические процессы имеют в своей основе окислительно-восстановительные реакции.

Окисление интенсивно протекает в верхних горизонтах и сопровождается выделением значительного количества тепла, в итоге подземные воды обогащаются газами, сульфатами, металлами, а в осадок выпадают, например, соединения железа или сера. Хорошими окислителями, кроме кислорода, являются элементы, способные принимать электроны (трехвалентное железо, четырехвалентный марганец). Окислению способствуют микроорганизмы.

Восстановительные реакции характеризуются недостатком или отсутствием кислорода. Восстановительная среда может быть сульфидной (сероводородной) и глеевой (бессероводородной). Первая приводит к биогеохимическому разложению сульфат-иона с образованием сероводорода, углекислоты и гидрокарбонат-иона; во второй образуются железистые воды, осаждаются марганец, медь, уран.

Источником энергии биогеохимических процессов служат органические вещества. Сами по себе они хорошие восстановители. Движущая сила таких реакций — бактерии. Широкая гамма аэробных (нуждающихся в кислороде) и анаэробных (обходящихся без него) бактерий воздействует на органику, поэтому в подземные воды переходят различные продукты ее разложения — кислоты, спирты, фенолы, элементоорганические соединения, углеводороды, а их взаимодействие с подземными водами вызывает удаление веществ, которые образуют с ними соединения.

Радиоактивный распад как процесс, формирующий состав подземных вод, еще нельзя оценить в полной мере, но несомненно, что благодаря ему происходит воспроизводство или поглощение радиоактивных элементов подземных вод (урана, радия, тория, радона, торона). С этим же процессом связано появление в подземных водах гелия.

Группа процессов, вызванных добавлением или удалением молекул воды (см. табл. 8), отличается коренным образом от только что описанных. Сюда прежде всего относятся гидратация и дегидратация минералов. Если гидратация, то есть захват свободной воды минералами, характерна преимущественно для верхней зоны и способствует концентрированию растворенных веществ, то дегидратация происходит исключительно в глубоких горизонтах и, вызывая обезвоживание пород, действует опресняюще на подземные воды. Гидратация вызывает концентрирование растворенного вещества. Однако эффект концентрирования мало заметен из-за высокой подвижности подземных вод в верхней зоне. О роли дегидратации упоминалось: это переход в свободное состояние почти дистиллированной воды.

Подземное испарение и вымораживание — процессы, приводящие к концентрированию подземных вод вплоть до выпадения растворенного вещества в осадок. Однако оба они не имеют регионального значения, хотя местами играют важную роль: испарение — в аридной зоне, вымораживание — в условиях ледового климата.

В начальной стадии этих процессов удаляются кремнистые соединения и карбонаты. При вымораживании раствор приобретает специфический состав, когда магний становится преобладающим катионом: удаление магния происходит после выпадения доломита. На следующих стадиях концентрирования раствор обогащается сульфатными и хлоридными солями. В процессе вымораживания подземных вод попутно с увеличением минерализации происходит сложное взаимодействие остающейся Жидкой фазы с породами — такое преобразование состава подземных вод называют криогенной метаморфизацией.

Наконец, о фильтрационном и осмотическом эффектах, которые получили обобщенное наименование мембранных. Суть их заключается в том, что при фильтрации подземных вод через породы с различной проницаемостью на мембранах, то есть породах с пониженной проницаемостью, имеет место отсеивание ионов и солей. Мембранные эффекты наиболее вероятны в случае рассеянной разгрузки подземных вод через глинистые водоупоры, но у многих исследователей они вызывают сомнение.

Природные обстановки формирования состава подземных вод. В природе, как известно, все взаимосвязано. Причины — факторы, вызывающие изменение состава подземных вод, и следствия — процессы, его создающие, проявляются в разнообразных сочетаниях и последовательности. На примере процессов хорошо видно, как часто один из них стимулирует и вызывает или, наоборот, подавляет другие. Цельное представление о формировании состава подземных вод можно получить лишь тогда, когда факторы и процессы рассматриваются с учетом генетического типа и генетического цикла подземных вод применительно к конкретным физико-географическим, геологоструктуриым и термодинамическим обстановкам.

О генетических типах подземных вод уже шла речь (см. рис. 9). Когда мы говорили о круговороте воды (см. рис. 5), упоминали и генетические циклы. Теперь суммируем имеющуюся информацию.

Генетический цикл — совокупность геологических процессов и их последовательность. Применение этого понятия позволило выдающемуся советскому гидрогеологу Г. Н. Каменскому еще в 40-х годах привести представления о формировании подземных вод в стройную систему и наметить следующие генетические циклы подземных вод:

инфильтрационный, или континентальный, связанный с инфильтрацией атмосферных осадков и комплексом процессов, идущих в верхних горизонтах;

морской, или осадочный, вызванный захоронением морских вод в процессе осадкообразования и дальнейшим их преобразованием;

метаморфический и магматический, связанные с формированием глубинных вод (гидротерм, возрожденных, ювенильных); иногда эти два цикла выделяют в один — вулканогенно-гидротермальный.

Для обособления конкретных обстановок формирования состава подземных вод следует принять во внимание приведенную ранее их классификацию (см. табл. 7) и учесть воздействие на подземную гидросферу двух разнонаправленных начал — поверхностного (экзогенного) и глубинного (эндогенного). Тогда мы получим различные природные обстановки, в которых проявляются факторы или действуют процессы. С известной долей условности по главным обстановкам выделяются следующие разновидности подземных вод:

грунтовые воды — формирование состава зависит исключительно от поверхностного начала, главным образом физико-географических условий;

напорные воды артезианских бассейнов — в этом случае превалируют геологоструктурные особенности, преимущественно наличие резервуаров пластового типа;

напорные воды гидрогеологических массивов — здесь также влияют прежде всего геологоструктурные условия, в особенности наличие резервуаров трещинного типа;

подземные воды территории распространения многолетнемерзлых пород — формирование состава определяется низкими (большей частью отрицательными) температурами;

подземные воды районов современного вулканизма — формируются под влиянием термодинамических условий, но на сей раз с высокими значениями температуры и давления;

глубинные воды — как показывает название, формирование их состава происходит под воздействием глубинного начала (выноса вещества из мантии, внутренних напряжений, геостатического давления и т. п.);

подземные воды под морями и океанами — тут ведущее значение имеет специфика субмаринных условий.

Обстановка формирования состава каждой из перечисленных разновидностей подземных вод детализируется в зависимости от ведущих факторов и процессов, а также других особенностей природной среды. Так, для грунтовых вод, следуя основным процессам, можно различать воды, в формировании которых превалирует выщелачивание, континентальное засоление (испарение) либо вымораживание. Обстановка формирования состава цапорных вод артезианских бассейнов нуждается в разграничении по литолого-фациальным особенностям пород, интенсивности переноса растворенных веществ и термодинамическим факторам, поскольку как раз эти показатели чаще всего играют основную роль в образовании вод различной минерализации и состава. Аналогичным образом возможна детализация и других главных обстановок.

СКУЛЬПТОР ЗЕМНОЙ КОРЫ

Вся масса воды и в жидкой, и в газообразной, и твердой форме находится в непрерывном движении, переполнена действенной энергией, сама вечно меняется и меняет все окружающее. Картина видимой природы определяется водой.

Вода стоит особняком в истории нашей планеты. Нет природного тела, которое могло бы сравниться с ней но влиянию на ход основных самых грандиозных геологических процессов.

В. И. Вернадский
Роль воды в жизни Земли чрезвычайно многогранна. Любой геологический процесс так или иначе связан с водой. Без нее они не протекают ни вблизи земной поверхности, ни на больших глубинах.

Созидающе-разрушительная геологическая деятельность воды давно интересует как геологов, так и специалистов других отраслей знаний. Если до недавнего времени наши сведения на эту тему ограничивались главным образом общими данными относительно участия воды в некоторых геологических процессах, то за последние 20–30 лет отношение к ним изменилось. Что же произошло? Во-первых, получена информация, показывающая роль воды буквально во всех геологических процессах; во-вторых, ее появление и жизнь в недрах Земли приобрели историческую основу и — это, пожалуй, главное — в-третьих, геологическая деятельность воды стала изучаться с помощью новых приемов, которые позволили в ряде случаев получить количественные параметры.

Стоит оглянуться вокруг, и мы сразу заметим результаты геологической деятельности воды. Если горы и долины, возвышенности и низменности «отшлифованы» поверхностными водами, то работа подземных вод проявляется в образовании карстово-провальных, мерзлотно-вспученных или оползневых форм рельефа, обязанных механическому и химическому выносу частиц горных пород. Благодаря подземной химической денудации, поверхность Земли, как подсчитал московский гидрогеолог В. П. Зверев, снижается в среднем на сантиметр каждые 2000 лет.

Особенно велика роль воды в эволюции земной коры. Тут вода отличается, применяя выражение В. И. Вернадского, «всюдностью». Она формирует осадочный и другие слои, регулирует чуть ли не все геологические процессы, создает и разрушает месторождения полезных ископаемых. Она меняет все окружающее, поэтому полезно выявить ее роль в различных геологических процессах. Попытаемся это сделать «сверху вниз», начиная с приповерхностных и кончая глубинными процессами.

Вода в гипергенных процессах. Гипергенез — совокупность приповерхностных процессов, протекающих в верхней части земной коры при низких температурах и давлениях. Значение подземных вод особенно наглядно видно в выветривании и цементации горных пород. В итоге геохимической деятельности воды зона гипергенеза оказалась полностью переработанной: разрушены минералы глубинного происхождения и образованы новые минеральные ассоциации, устойчивые в верхних частях земной коры.

Подземные воды — агент химического выветривания (денудации) и последующего выноса продуктов разрушения. Величина подземной химической денудации, по расчетам В. П. Зверева, имеет минимальные значения на кристаллических щитах, где характеризуется интенсивностью 0,05–0,2 сантиметра за 1000 лет. Чуть выше она на платформах и еще выше в горно-складчатых областях. Максимальные значения подземной химической денудации отмечены для области альпийской зоны складчатости (1 сантиметр и более за 1000 лет), однако при наличии многолетнемерзлых пород цифры уменьшаются в 1,5–2 раза.

Весьма интересной разновидностью подземной денудации является карст. Карстовые пещеры, воронки и другие пустоты самой причудливой формы хорошо известны. Вода создала их в породах, подверженных выщелачиванию. В зависимости от состава пород различают карбонатный, гипсовый и соляной карст. Если принять растворимость известняка за 1, то соотношение растворимости известняка, гипса и каменной соли будет 1: 158: 27 477.

Это соотношение вычислил ленинградский профессор А. И. Дзенс-Литовский — прекрасный знаток соляных месторождений и соляного карста. Составленный им типовой разрез месторождения с соляным карстом (рис. 13) дает наглядное представление о выщелачивании залежи каменной соли.



Рис. 13. Типовые гидрогеологический разрез закарстованного  месторождения каменной соли.


1 — уровень грунтовых вод; 2 — современные карстовые пустоты, 3 — древние карстовые пустоты; 4 — каменная соль; 5 — водоносные горизонты; 6 — водоупорные породы.

Подземные воды: I — надсолевые, II — современных карстовых пустот, III — боковые, IV — древних карстовых пустот, V — подсолевые.


…Память невольно возвращает в недавнее прошлое, когда был жив Алексей Иванович. Хотя ему шел уже девятый десяток, он много работал, в частности писал воспоминания «Встречи геолога», и любил ездить — в течение года мог побывать на Дальнем Востоке и в Средней Азии, на Урале и Кавказе, часто посещал Байкал. И когда кто-либо удивлялся его работоспособности и подвижности, в ответ он читал стихи:

Когда мне говорят, что я старею,
Что жизнь уже похмелье, а не
хмель,
Я кулаки сжимаю, я зверею
И старость вызываю на дуэль.
За свою долгую жизнь этот человек многое повидал и очень интересно рассказывал о пережитом. С трудом верилось, что он знал дореволюционный Геолком, был свидетелем бурного 1917 года в Петрограде, начинал работать в Академии наук под руководством А. Е. Ферсмана и Н. С. Курнакова. Часто любил вспоминать А. П. Карпинского, В. И. Вернадского, И. П. Губкина… Не менее увлекательно звучали рассказы, скажем, о первых шагах в геологии нынешнего вице-президента АН СССР А. Л. Яншина, который в 30-х годах работал коллектором у Алексея Ивановича, а также о встречах с другими крупными исследователями в их молодые годы.

Диапазон исследований Дзенс-Литовского был достаточно широк, но больше всего его занимало изучение гидрогеологии месторождений каменной соли, соляного карста и соляных озер. Последние его книги так и назывались — «Соляной карст СССР», «Соляные озера…», «Кара-Богаз-Гол». Надо сказать, что вместе с Н. И. Толстихиным он составил в 1937 году первую карту минеральных вод СССР. На протяжении ряда лет Алексей Иванович работал и жил в Сибири (Западной и Восточной), а в последние годы активно участвовал в проведении совещаний по подземным водам Сибири и Дальнего Востока.

По интенсивности водной миграции в зоне гипергенеза, как установил академик Б. Б. Полынов, химические элементы образуют несколько рядов водной миграции, что как раз и объясняет различную растворимость указанных выше пород. Энергично выносятся хлор, бром, сера. Меньше интенсивность выноса из пород у натрия, кальция, магния, фтора. Еще менее подвижны калий, кремний, фосфор, марганец. Наконец, такие элементы, как, скажем, титан или цирконий, практически инертны по отношению к водной миграции.

Что же из этого следует? Анализ показывает, что в зоне гипергенеза сохраняются залежи наименее подвижных элементов. Наоборот, скопления энергично выносимых элементов разрушаются подземными водами, при этом элементы мигрируют не изолированно, а в соединениях друг с другом. Когда, скажем, выносится хлор, то одновременно уходит и эквивалентное количество натрия.

Из других гипергенных процессов, в которых вода играет ведущую роль, можно назвать биогеохимические и мерзлотные. Совершенно особый процесс в зоне гипергенеза — упомянутая уже хозяйственная деятельность человека. С точки зрения гидрогеолога он обусловлен, во-первых, закачкой воды в недра и, во-вторых, извлечением ее оттуда.

О последствиях первого процесса мы уже говорили, поэтому коснемся лишь геологических последствий извлечения воды из недр Земли.

Опускание территории и даже подъем уровня мирового океана — таков неутешительный итог все прогрессирующего отбора подземных вод. Это, вероятно, наиболее важный результат непреднамеренного воздействия человека на геологическую среду.

Глубина депрессионных воронок вокруг некоторых городов и горно-промышленных центров превышает 50– 100 метров. Снижение уровня воды порождает оседание земной поверхности. Но имеется и другой, пожалуй, неожиданный аспект этой проблемы — подъем уровня океана. Согласно подсчетам доктора геолого-минералогических наук И. Г. Киссина, за последние полстолетия подземные воды обеспечили 20 % прироста уровня воды Мирового океана (0,36 миллиметров в год от ежегодного повышения на 1,7 миллиметра).

Оседание поверхности из-за прогрессирующего отбора подземных вод особенно наглядно наблюдается на участках распространения рыхлых отложений, которые в черте крупных городов уплотняются затем под действием зданий и сооружений. Таковы, например, основания городов Мехико, Токио или Венеции, откуда длительное время откачиваются подземные воды. В Мехико осадка грунта достигла 6–8 метров. Для наглядности в городе сохраняется облицовка колодцев, построенных еще ацтеками, — они торчат на 5–6 метров выше современной поверхности. Но хуже всего, пожалуй, дело обстоит в Венеции. Над ней нависла угроза быть затопленной морем, если не прекратится неумеренная эксплуатация месторождения подземных вод, находящегося буквально под самым городом.

Роль воды при литогенезе и метаморфизме. Осадочное породообразование, называемое литогенезом, начинается с выпадения рыхлого осадка в водоеме и заканчивается его превращением в кристаллическую породу. На всех стадиях литогенеза и продолжающего его метаморфизма осадок и порода испытывают воздействие воды. По существу, осадочное породообразование заключается в высвобождении связанной воды по мере роста глубины и увеличения давления. В случае превращения ила в глинистый сланец количество воды уменьшается от 90 до 1% и менее.

Характер преобразования породы определяется стадиями литогенеза, которые называются диагенез, катагенез и метагенез. Они последовательно сменяют друг друга по мере погружения породы.

Диагенез — дословно «перерождение», то есть превращение рыхлого осадка в плотную породу с полной потерей иловых и отчасти поровых вод. При взаимодействии осадка с подземными водами происходят сложные процессы растворения неустойчивых соединений, выделение минералов из подземных вод, обменно-адсорбционные реакции, гидратация и дегидратация минералов, перекристаллизация солей и цементация осадка. На диагенез существенно влияют биогеохимические процессы и окислительно-восстановительная среда подземных вод.

Если диагенез характерен для приповерхностных условий, то катагенетические (ката- «вниз») изменения — это те, которые вызваны увеличением давления (от 100 до 500 атмосфер и более) и температуры (от 50 до 200°). Что же получается? Происходит сильное обезвоживание породы путем удаления как поровой, так и кристаллизационной воды. На этой стадии порода еще не утратила черты нормального осадочного образования, но слабее испытывает влияние внешнего поверхностного воздействия. Геохимическая деятельность подземных вод выражается в образовании новых минералов и разложении достаточно стойких химических соединений; в раствор переходят даже малоподвижные элементы, многие соли и газы — углекислота, сероводород, метан.

Метагенез (мета — «после») — протекает на больших глубинах, где с породами взаимодействуют газово-жидкие растворы. Под действием высоких давлений (до 1500 атмосфер и более) и температур (200–450°) происходит структурная переработка осадочных пород, в которых остается прочно связанная с породой вода. Влияние газово-жидких растворов находит отражение в окварцевании, мраморизации, а также перекристаллизации пород.

С литогенезом связаны осадочное рудообразование и формирование нефтегазовых залежей. И тут, как будет далее показано, ведущая роль принадлежит воде!

Метаморфизм — комплекс высокотемпературных изменений горных пород — происходит только с участием воды. Он придает породам кристаллическое состояние. Вода при этом присутствует «в избытке»; если же ее нет, как считают многие знатоки метаморфизма, процесс прекращается. Более того, каждому типу метаморфизма присущ отличный от другого характер взаимодействия в системе порода — вода.

При метаморфизме пород вода выполняет важные функции, которые академик В. И. Смирнов сводит к следующему. Во-первых, пары воды развивают высокое давление, обусловливая соответствующее течениеэтого процесса. Как показал академик Д. С. Коржинский, не масса воды, а вызываемое ею давление играет ведущую роль в возникающей ассоциации минералов и тем самым определяет стадию минералообразования. Во-вторых, она понижает температуру самого процесса. В-третьих, многократно ускоряет ход преобразования пород; в сущности, вода — катализатор всех этих реакций. В-четвертых, увеличивает кристаллизационную способность минералов, то есть ускоряет их выделение. Наконец, в-пятых, выступает в роли активного растворителя химических соединений, участвующих в метаморфизме.

Описанным процессом охвачены громадные массы осадочных и магматических пород. В общей сложности, согласно подсчетам академика А. В. Сидоренко и его учеников, за геологическую историю Земли при метаморфизме высвобождено количество воды, равное по массе объему наземной гидросферы.

Однако процесс последовательного преобразования пород заключается не только в высвобождении воды. Имеет место и обратная картина — вовлечение подземных вод метеорного, магматического или морского генезиса в породообразование. В частности, оно наблюдается и подтверждено изотопными исследованиями для так называемого регрессивного метаморфизма.

Деятельность воды в магматическом цикле. Как и при метаморфизме, вода активно участвует в магматических процессах. Обладая высоким потенциалом энергии, она сильно влияет на фазовые равновесия в магматических системах и физические свойства силикатных расплавов, в связи с чем играет самую ответственную роль при образовании и дифференциации магмы.

Функции воды в магматическом цикле таковы. Во-первых, опа, о чем только что говорилось, является одним из главных энергетических источников магматизма. Во-вторых, присутствие воды — наиболее вероятная причина плавления мантийного вещества. В-третьих, вода вызывает существенное изменение физических свойств магмы, влияя тем самым на ее подвижность и реакционные свойства: добавление ее снижает вязкость и повышает интенсивность массопереноса. В-четвертых, она представляет основной летучий компонент, резко понижающий температуру плавления силикатных пород. В-пятых, определяет последовательность кристаллизации магмы и состав выплавок. Наконец, в-шестых, изменяет течение процесса в случае проникновения ее в магму из боковых пород.

Вопрос о количестве воды в магматическом расплаве дискуссионен. Некоторые исследователи, в том числе известный вулканолог Г. Тазиев, склонны считать магму безводной. Однако в магме почти всегда обнаруживают воду. Скорее всего, она появляется еще в магматическом очаге, при этом на больших глубинах магма поглощает воду, а в верхних горизонтах, наоборот, обезвоживается. Магмы различного состава отличаются по содержанию воды: основная магма, где мало кремнекислоты, содержит ее 0,1–1%, редко 3–4 %, а кислая, которая обогащена кремнекислотой, — значительно больше (4–10 %).

Ранее мы обращали внимание на высокую, намного превышающую обычную, растворимость воды в глубоких частях земной коры. Снизу вверх она постепенно снижается. Поэтому поднимающиеся рудоносные растворы, независимо от происхождения, по мере снижения температуры и давления сбрасывают «рудный груз». Интервал глубин 1–4 километра, где происходит выделение минералов из горячих водных растворов, принято называть поясом гидротермального рудообразования, а связанные с ним месторождения — гидротермальными.

Источник химических соединений, переносимых гидротермальными растворами, не обязательно заключен в магме. Как уже отмечалось, наряду с ювенильной водой магматический расплав содержит воду, заимствованную из окружающих пород на ранних стадиях внедрения, то есть метаморфогенную, инфильтрогенную и седиментогенную. Поэтому химические элементы в той или иной мере поставляются вмещающими магму породами.

Водяной пар высвобождается из магматического расплава вместе с другими летучими компонентами на различных уровнях существования магматического расплава, по мере его подъема. Взаимодействие в системе вода — магма имеет сложную историю и во многом не ясно, но минералообразующая роль газово-жидких растворов, выделяемых при магматизме, не вызывает сомнения. Отсюда и название месторождений: пневматолитовые — из газовой фазы и в какой-то мере уже упомянутые гидротермальные — из жидкой фазы. Это месторождения железа, марганца, серебра, золота, ртути, сурьмы, меди, цинка, свинца, молибдена, кобальта, вольфрама, висмута, олова, урана и многих других элементов, преимущественно металлов. Перечисленные элементы переносятся в соединениях с хлоридами, фторидами, гидрокарбонатами, сульфидами, сульфатами и силикатами, а также в гидратной форме или в виде комплексных ионов.

Горячие источники на дне морей и океанов. Сенсационные сообщения о современной гидротермальной деятельности в последнее время стали поступать от исследователей переуглубленных зон морского и океанического ложа. Здесь были обнаружены выходы металлоносных вод с температурой до 300–3.50 °C. Такие зоны образуются в результате растяжения земной коры и представляют впадины — каньоны с отвесными стенками глубиной в несколько километров. Геологи их называют рифтами («рифт» по-английски — расселина, щель, трещина) или зонами спрединга (т. е. раздвижения). Они обычно тяготеют к тектонически ослабленным участкам срединноокеанических хребтов и окраинам океанов, хотя встречаются также на дне морей (впадины Красного моря или Калифорнийского залива) и даже на суше (например, Байкальский рифт, Верхнерейнский грабен).

Впервые выходы высокотемпературных рассолов выявлены в осевой части Красноморского рифта. Разгрузка происходит в глубоководную впадину Атлантис-2 (глубина 2170 м), откуда они переливаются в две соседние впадины — Дисковери и Чейн. В этих впадинах со скоростью 0,4 сантиметра в год выпадают металлоносные осадки, образующие богатые месторождения руд свинца, цинка, меди, марганца, железа. По подсчетам специалистов общие запасы их только во впадине Атлантис-2 оцениваются в 83 миллиона тонн.

Еще более интересной оказалась современная гидротермальная деятельность в окраинных частях Тихого океана, особенно в гребне Восточно-Тихоокеанского поднятия на участке к югу от входа в Калифорнийский залив. Мощные струи горячих (с температурой до 350 °C) вод здесь выходят на дне океана и связаны с неглубоко залегающими магматическими очагами. Разгрузка фиксируется в виде «черных дымов» и «черных курильщиков».



Рис. 14. «Черный курильщик» в месте выхода горячих источников на океаническом дне.


Что это такое? Черные дымы обязаны своим появлением выпадению из охлаждающегося гидротермального раствора черных по цвету частичек сульфида железа (рис. 14). Над выходом горячих струй образуется «труба» диаметром около 1,5 метров и высотой в несколько метров. Ее-то и называют «черным курильщиком». Ее горловина формируется из сульфата кальция (ангидрита), который осаждается на океаническом дне в месте выхода гидротерм. По мере роста нижняя часть трубы подвергается воздействию неразбавленного горячего раствора и сульфат кальция замещается на сульфиды металлов. Иссякает и «черный дым»: в связи с окислением из него выпадают металлоносные осадки.

Акванавт-исследователь Д. М. Эдмонд, увидав из иллюминатора глубоководного аппарата поле «черных курильщиков», назвал его сказочным зрелищем. Внутри круга диаметром в 100 метров океаническая вода поблескивала в свете прожекторов и высвечивала удивительный животный мир (пурпурные актинии, гигантские двустворки, крупные розовые рыбы и т. д.), а горячая вода струилась из каждой расселины, и над выходами курился черный шлейф. Зрелище было настолько увлекательным и интересным, что этот чудесный оазис на фоне унылого базальтового ландшафта океанического дна исследователи изучали, по их словам, в состоянии, близком к помешательству.

Разгрузка горячих вод на дне Тихого океана отмечена также у берегов Южной Америки в районе Галапагосских островов и западнее Марианской островной дуги. Будущие исследования, несомненно, позволят обнаружить и другие участки черных дымов.

Подземная гидросфера и сейсмичность. Исследования на стыке гидрогеологии и сейсмологии в последнее время привлекают все возрастающее внимание. Они рассматривают роль воды в образовании землетрясений и при поисках их гидрогеологических предвестников. Насколько все это реально?

Вода, оказывается, регулирует тектонические процессы. Американские ученые М. К. Хабберт и В. Руби выявили, что при дегидратации минералов давление воды в порово-трещинном пространстве глубоких горизонтов нейтрализует геостатическую нагрузку и вызывает активизацию внутреннего давления. Так могут возникнуть не только небольшие подвижки, но и гигантские перемещения пород по пологим сместителям — надвигам.

С отмеченным явлением может быть связано образование сейсмических дислокаций и появление землетрясений. Уже крайне небольшие добавки воды на 1–2 порядка ускоряют деформационный эффект. И. Г. Киссин приписывает ей роль клина, снижающего прочность пород и уменьшающего силы трения при сейсмических подвижках. Вероятно, поэтому при добавлении воды сейсмические напряжения и вызывают сотрясаемость. Поскольку очаги землетрясений — во всяком случае коровые (мелкофокусные) — локализуются в обводненных зонах разломов или узлах их пересечения, воду можно рассматривать как составную часть среды, в которой развиваются сейсмические процессы и подготавливаются землетрясения.

Впрочем, тут нужно оговориться. Не все согласны с таким мнением. Многие сейсмологи считают, что обе модели, используемые в настоящее время для объяснения механизма подготовки землетрясений, — дилатантно-диффузионная и лавинно-неустойчивого трещинообразования — могут «работать» и без воды.

С водой или без воды? Спор, кажется, разрешили так называемые возбужденные землетрясения. Они возникают в результате закачки воды через скважины в глубокие горизонты и заполнения крупных водохранилищ. Более того, с помощью таких «искусственных» землетрясений оказалось возможным потихоньку выпускать «пар из котла» и снижать естественную сейсмическую активность. В Японии — стране, которая сильнее других страдает от землетрясений, — начаты эксперименты по управлению землетрясениями путем регулируемой закачки воды в недра Земли.

Независимо от того, как подготавливаются сейсмические процессы, они оказывают очень большое воздействие на режим подземной гидросферы. Об этом люди догадывались раньше, пожалуй, еще в античную эпоху, а в последнее время изменения гидрогеодинамического, гидрогеохимического и гидрогеотермического режима стали использовать в качестве гидрогеологических предвестников землетрясений.

В сейсмоактивной области Прибайкалья вдоль «стройки века» — БАМа — с 1975 года начаты сейсмогидрогеологические исследования. Осенью 1976 года в пунктах наблюдений вдруг стали ощущаться тревожные изменения — увеличение дебита, падение и рост концентрации гелия в подземных водах… Через несколько дней произошло Уоянское землетрясение силой 6 баллов (рис. 15).



Рис. 15. Изменение концентрации гелия в воде и дебита Окусикапского источника перед Уоянским землетрясением в Северном Прибайкалье (2 ноября 1976 года).


Землетрясения вызывают изменения уровня, дебита и температуры подземных вод; хорошо реагирует на сейсмические толчки величина концентрации в воде многих растворенных веществ — радона, гелия, ртути, фтора, при сильных толчках она изменяется, порой очень сильно. Опыт изучения среднеазиатских землетрясений показал, что достаточно разветвленная сеть пунктов сейсмогидрогеологических наблюдений по характеру колебания содержания радона и гелия в подземных водах позволила бы за несколько дней предсказать отдельные разрушительные толчки. А нельзя ли землетрясения прогнозировать так же, как и погоду?

Прогнозирование сейсмической опасности относится к числу важнейших, но одновременно очень сложных и трудных проблем. Всестороннее научное обоснование прогноз землетрясений получает лишь в последние годы. Задача состоит в том, чтобы, во-первых, оконтурить место, где будут ощущаться подземные толчки, во-вторых, рассчитать максимальную их силу для отдельных пунктов и, в-третьих, определить время, когда произойдет разрушительное землетрясение. Первые два элемента прогноза — место и сила — сейчас выявляются достаточно хорошо и с удовлетворительной точностью; они находят отражение на картах сейсмического районирования. А вот определение времени землетрясения пока далеко от решения. Когда говорят о прогнозировании землетрясений, то имеют в виду прежде всего этот параметр.

Кроме гидрогеологических предвестников, существуют собственно сейсмические (по статистике землетрясений, наличию специфических форшоков[3] и областей затишья), деформационные, включая наклоны поверхности Земли, и различные геофизические (по изменению, скажем, электросопротивления горных пород или электромагнитного поля) методы прогноза землетрясений. Хорошие результаты начинает давать сейсмическое «просвечивание» земных недр.

В деле прогнозирования землетрясений сделаны только первые шаги. Нет даже сводного «портрета» предвестников, что заставляет ориентировать исследования таким образом, чтобы выяснить связь землетрясений с как можно большим количеством природных явлений.

Насколько информативны гидрогеологические показатели? Они весьма эффективны, если используются комплексно, совместно с другими методами, и учитывают по возможности максимальный набор гидрогеодинамических, гидрогеохимических и гидрогеотермических признаков. В этом случае вполне реален не только краткосрочный (дни, недели), но и долгосрочный (годы) прогноз, хотя в целом гидрогеологические предвестники наиболее ценны при предсказывании ближайших по времени землетрясений — за несколько дней или недель. Гидрогеологические предвестники способны указывать на мелкофокусные и глубокофокусные землетрясения. Что же касается расстояния, то эти показатели действенны в радиусе до нескольких сот километров от эпицентра. Они предупреждают преимущественно о сильных землетрясениях (5–6 и более баллов).

К гидрогеологическим предвестникам и вообще к прогнозу землетрясений существуют полярно противоположные отношения: иногда их чересчур идеализируют, в других случаях, напротив, полностью отрицают. Думается, гидрогеологические аномалии в сейсмических районах нельзя ни переоценивать, ни недооценивать. Ведь несмотря на ограниченные факты сейсмичность сказывается на режиме подземных вод. К тому же наблюдательная сеть пока далеко не представительна, что служит главной причиной неоднозначности любых предвестников.

Поэтому сейчас нельзя объективно оценить прогностическую роль всех тех параметров, которые здесь названы гидрогеологическими предвестниками землетрясения. Время покажет, насколько они информативны.

Вода и месторождения полезных ископаемых. Роль воды в образовании и разрушении месторождений полезных ископаемых — предмет постоянного изучения геологов, геохимиков, гидрогеологов. Подземная гидросфера, образно выражаясь, есть резервуар, в котором находятся скопления минерального сырья. Вода, с одной стороны, выступает как носитель химических элементов и при благоприятных условиях создает такие скопления, с другой — она изменяет и разрушает рудные, соляные, нефтегазовые и другие залежи.

Принимая участие во всех геологических процессах, вода несет информацию о них. Нельзя ли воспользоваться ей для выявления месторождений полезных ископаемых? Да, можно. Человек давно научился это делать.

Тезис «Каковы породы, таковы и воды» позволяет решать обратную задачу. И если применительно к формированию состава подземных вод слова Аристотеля пришлось видоизменить, то в поисковой геологии решение обратной задачи себя полностью оправдало. На принципе: «Каковы воды, таковы и породы» основан гидрогео-химический метод поисков полезных ископаемых, когда по составу подземных вод, омывающих залежи и выходящих на поверхность или вскрываемых скважинами, достаточно точно устанавливают в земных недрах неизвестное месторождение и даже определяют его контуры. Так были открыты руды Талнаха и Забайкалья, отдельные нефтегазовые месторождения Поволжья, оценены перспективы нефтегазоносности Тюменской области. Очень эффективен гидрогеохимический метод при поисках залежей горнохимического сырья, полиметаллов, радиоактивных руд.

В начале 60-х годов по инициативе академика А. Л. Яншина в Восточной Сибири были начаты поиски калийных солей с использованием различных методов. Весьма действенным оказался гидрогеохимический метод. Благодаря ему удалось оконтурить три наиболее перспективных района (рис. 16). На одном из них сразу обнаружили залежи калийных солей, но они оказались маломощными. Буровые работы стали сворачиваться. И вдруг… Такое случается редко, тем более спустя 15 лет: во втором по перспективности районе одна скважина вошла в пласты карналлита и сильвина мощностью в несколько десятков метров. Так был открыт Непский калиеносный бассейн. А совсем недавно (опять-таки по гидрогеохимическим показателям) резко возросли его перспективы. Кажется, здесь обнаружена крупнейшая в стране кладовая калийных солей.

По характеру взаимоотношения с подземными водами различают пять групп месторождений полезных ископаемых:

месторождения труднорастворимых рудных залежей, прямо или косвенно сформированные гидротермальными растворами; сюда входят не только месторождения гидротермальной группы, но и другие — магматические, скарновые и так далее;

месторождения зоны выветривания, образовавшиеся в результате гипергенного минералообразования или накопления в остаточных продуктах;

осадочные скопления легкорастворимых (соляных) пород, сформированные на дне водоемов и подверженные процессам разрушения подземными водами (месторождения химического класса);

залежи нефти и газа (месторождения биохимического класса);

месторождения труднорастворимых рудных и нерудных залежей, образование и разрушение которых связано с биогенной миграцией (например, месторождения каустобиолитов или фосфоритов) и механическим разрушением (россыпные месторождения) при участии подземных и поверхностных вод.

Не во всех пяти группах месторождений значение воды в формировании и разрушении одинаково. Если в первых двух вода играет в основном созидающую роли, то в двух следующих она не только создает их, но и является агентом разрушения. В формировании и разрушении последней группы месторождений роль воды не столь заметна.

В гидротермальном процессе вода служит той подвижной средой, где в растворенном состоянии переносятся многие соединения металлов, происходят различные химические реакции, и она же, вернее, продукты ее электролитической диссоциации принимают участие во всех этих преобразованиях. Специфика рудообразующих гидротермальных растворов заключается не в том, что в них есть экзотические компоненты или соединения, как это следовало бы, казалось, ожидать, а в высокой концентрации отдельных элементов, не известной для других подземных вод, — кремнезема, фтора, бора; ими образованы сульфидные, кварцевые, карбонатные и другие соединения железа, меди, свинца, цинка, молибдена, олова.

Гидротермальные месторождения, зоны минерализации и кварцевые жилы, по меткому замечанию основателя учения о гидрогеологии мерзлой зоны А. В. Львова, следует рассматривать в качестве окаменелых «источников», а ныне действующие минеральные источники — как формирующиеся месторождения.

Современный гидротермальный процесс выявлен в рифтовых впадинах, вулканических и горно-складчатых зонах. Характерным его проявлением могут быть металлоносные термы, обнаруженные на дне Красного моря. Они заполняют придонные впадины, имеют температуру более 50 °C, по составу хлоридные натриевые с минерализацией около 300 граммов на литр и высоким содержанием многих металлов (железа, марганца, свинца, меди, цинка). Рудами этих же металлов сложены придонные осадки. Скорость накопления таких руд достигает 40 сантиметров за 100 лет, объем их колоссален, а стоимость, по оценке специалистов, составляет 2,5 миллиарда долларов. Причиной рудоотложения считается геохимический барьер, образующийся при смешении глубинных металлоносных рассолов с кислородосодержащими водами Красного моря.

Современные гидротермальные процессы обнаружены в Калифорнии у Салтон-Си и в Туркмении на полуострове Челекен, а также в вулканических районах.

Еще разнообразнее месторождения, появившиеся в результате гипергенного минералообразования, то есть выпадения и концентрирования растворенного вещества в условиях низких температур и давлений. Благодаря этому процессу возникли так называемые инфильтрационные и остаточные месторождения (бокситов, железных и марганцевых руд, полиметаллов, редких земель, фосфоритов, гипса и других солей). Большую роль в формировании залежей полезных ископаемых играют геохимические барьеры. На них осаждаются полезные ископаемые инфильтрационного типа. Что же касается остаточных месторождений, то наиболее типичным их представителем служат зоны окисления колчеданных руд («железные шляпы»), где концентрируются самые различные металлы.

Вода (правда, не подземная, а наземная) создает месторождения солей путем испарения или вымораживания. Но она же (на сей раз внутриземная вода) изменяет их и, если не насыщена, постепенно разрушает образовавшиеся ранее залежи.

При уплотнении толщ каменной соли или калийных солей, гипса, мирабилита высвобождается дегидратационная вода, которая совершает большую геохимическую и геодинамическую работу. Работу, результаты которой заметны, что называется, невооруженным глазом. Геохимическая работа заключается в выносе и переотложении разных химических элементов. Так, в частности, формируются месторождения боратов. Активная геохимическая деятельность приводит к изменению формы залежи (см. рис. 13) или даже к ее уничтожению. Наглядно динамическая работа отжимаемой воды видна в складкообразовании и разрушении сплошности горных пород.



Рис. 16. Схема перспектив калиеносности юга Сибирской  платформы по гидрогеохимическим показателям.

1 — перспективные районы, выделенные по аномально повышенной  концентрации калия в подземных водах (I — Канско-Тасеевский, II — Непско-Тунгусский, III — Кутуликско-Шелонинский); 2 — мощные пласты сильвина и карналлита (Непский калиеносный бассейн); 3 — проявления калийных солей; 4 — граница Сибирской платформы.


Столь же велика роль воды в жизни нефтегазовых месторождений. Какой бы концепции происхождения углеводородных залежей ни следовать (рис. 17), в каждой из них важное значение имеет вода.

Если образование месторождений нефти и газа происходит в подвижной водной среде, обеспечивающей перенос углеводородов, то для их сохранения необходимы условия застойного режима. Вообще, степень подвижности воды по своему влиянию на формирование и разрушение нефтегазовых залежей является, без сомнения, наиболее важным параметром среди всех других факторов среды, поскольку именно в нем интегрируется суммарное воздействие тектонической активности, особенностей вещественного состава пород и изменения во времени термодинамической обстановки.

Выдающийся геолог-нефтяник академик И. М. Губкин, классически обосновавший органическое происхождение нефти, в своих работах показал, что формирование и разрушение нефтегазовых месторождений, происходящее в водной среде, представляет единый многоступенчатый процесс. Он включает четыре последовательные стадии:

накопление исходного органического вещества в осадочных отложениях и образование углеводородов; большое значение при этом имеет наличие не только водоносной емкости, но и экрана нефте-, водо- и газонепроницаемых пород;

перемещение углеводородов из нефтематеринских толщ в коллекторы и последующая водная миграция по пласту-коллектору или разрывным нарушениям и трещинам;

аккумуляция нефти и газа в благоприятных структурных и литологических условиях (в так называемых «ловушках») на пути водной миграции с образованием месторождений, которые обычно тяготеют к зонам разгрузки подземных вод;

перераспределение или разрушение образовавшихся залежей, наступающее в случае изменения геологических условий (чаще всего движущимися водами механическим или физико-химическим путем).

Подведем итоги. Когда-то, за шесть столетий до нашей эры один из первых античных натурфилософов Фалес Милетский считал воду первоосновой всего; по его мнению, она послужила началом земле и воздуху. Древние были мудры, но ошибались. Не будем столь наивны, чтобы замахиваться на все мироздание! Нет, не Землю с большой буквы, а только (!?) земную кору вода действительно создала. Судя по роли в геологических процессах, вода — подлинный скульптор земной коры.



Рис. 17. Схематическое изображение различных гипотез  происхождения нефти и газа (по М. Е. Альтовскому).

А—«гидрогеологическая», Б — органическая (нефтепроизводящих свит), В — неорганическая; 1 — водоносные слои (коллекторы), 2 — водоупоры,  3 — нефтепроизводящие свиты, 4 — кристаллические породы, 5 —  нефтегазовые залежи, 6 — места образований и пути миграции углеводородов.


ПОДЗЕМНЫЕ ВОДЫ — КОМПЛЕКСНОЕ ПОЛЕЗНОЕ ИСКОПАЕМОЕ

[Подземная] вода есть самое главное полезное ископаемое.

А. П. Карпинский

Все подземные воды — воды возобновляемые.

А. И. Силин-Векчурин
Месторождения подземных вод. Изучение подземной гидросферы ведется не только ради познания ее тайн или для выяснения роли воды в геологических процессах. Главная цель — хозяйственное использование заключенных в ней ресурсов, в первую очередь подземных вод, роль которых особенно возросла за последние годы в связи с увеличивающейся потребностью в пресной воде, развитием санаторно-курортной сети, извлечением из минеральных вод подземного тепла и целой гаммы необходимых для промышленности химических элементов. На службу человека начинают привлекаться также подземные льды, пароводяная смесь и другие компоненты подземной гидросферы, масштабы освоения которых, однако, еще скромные.

Вряд ли будет преувеличением заявить, что в наше время без использования воды земных недр не обходится ни одна отрасль промышленности и сельского хозяйства, практически ни один населенный пункт, пожалуй, никто и ничто на Земле. Особенно большое значение они имеют в экстремальных климатических условиях — пустынях и зоне мерзлоты, где служат главным источником водоснабжения. Недаром говорят, что «в пустыне вода дороже алмаза» (заметим: там это, как правило, вода подземная). С золотом сравнивают ее жители Севера. Более того, подземные воды принято считать главным, наиболее драгоценным и важнейшим полезным ископаемым. Так о них говорил на I Всесоюзном гидрогеологическом съезде «патриарх» русской геологии академик А. П. Карпинский.

Как и у других полезных ископаемых, скопление подземных вод, пригодное для использования, называют месторождением. Различают таковые пресных и минеральных вод. Однако в отличие от обычных месторождений они специфичны и представляют динамичную систему с меняющимися границами и изменяющимся качеством, а само полезное ископаемое под влиянием природных или искусственных факторов — этим оно отличается от остальных видов минерального сырья — является возобновляемым.

При количественной оценке подземных вод используют такие понятия, как геологические запасы, к которым относится стационарный объем воды в подземном резервуаре, и естественные ресурсы, то есть поступающая в резервуар часть воды, которая непрерывно возобновляется в процессе общего круговорота влаги на Земле. В первом случае размерностью будут объемные единицы, во втором — расход в единицу времени. Количественную оценку месторождений подземных вод дают эксплуатационные ресурсы (часто их по аналогии с другими полезными ископаемыми называют «запасы», хотя они, имея размерность расхода, характеризуют не запасы, а именно ресурсы). Под ними понимается количество подземных вод, получаемое рациональными в технико-экономическом отношении водозаборными сооружениями при заданном режиме эксплуатации и качестве воды в течение всего расчетного срока потребления. Кроме того, могут быть искусственные запасы (объем накопления или восполнения) и ресурсы (расход такого потока).

Эксплуатационные ресурсы (запасы) включают не только естественные, но и искусственные ресурсы — привлекаемые поверхностные и другие воды для восполнения резервуара. Поэтому величина эксплуатационных ресурсов (запасов), будучи, как правило, меньше количества естественных ресурсов, в случае привлечения искусственных ресурсов значительно их превосходит. Впрочем, встречаются месторождения, в первую очередь подземных вод глубоких горизонтов, эксплуатация которых производится главным образом путем сработки геологических запасов: тогда эксплуатационные ресурсы (запасы) намного больше естественных ресурсов.

Существуют различные группировки месторождений подземных вод — в зависимости от водно-коллекторских свойств пород, напора или состава подземных вод, влияния физико-географических факторов и условий эксплуатации. Наиболее простой является типизация, основывающаяся на водно-коллекторских свойствах пород и позволяющая выделить следующие типы месторождений пресных и минеральных вод: пластового, трещинно-жильного и смешанного пластово-трещинного типа. На учете напорных свойств подземных вод с последующей детализацией по условиям накопления естественных ресурсов и эксплуатационным возможностям основана классификация месторождений пресных подземных вод ведущего советского гидрогеолога профессора Н. И. Плотникова (табл. 10), который называет выделенные типы промышленными, иначе говоря, пригодными для промышленной эксплуатации.



Искать месторождения подземных вод не всегда просто. Порой они бывают скрыты на большой глубине или приурочены к зонам тектонических нарушений, которые не проявляют себя на поверхности. Не везде подземные воды можно получить в нужном количестве и удовлетворительного качества. Поэтому еще в глубокой древности высоко ценилось искусство их поисков.

Методы обнаружения месторождений подземных вод разнообразны, но все они основаны на знании закономерностей распространения этого полезного ископаемого в недрах Земли. Чтобы выявить места скопления подземных вод там, где отсутствуют источники, используют литологические, геологоструктурные, орографические, гидролого-гидрогеологические и другие критерии поисков. О глубине залегания подземных вод можно судить по влаголюбивым растениям-фреатофитам. Для обнаружения и оконтуривания месторождений широко используются геофизические поиски, в частности электроразведка, которая сравнительно легко по различному сопротивлению водонасыщенных и безводных пород выявляет скопления подземных вод. В последние годы используются дистанционные методы (космические и другие). Только после такой тщательной подготовки выводят подземные воды колодцами или скважинами.

Короче, поиски месторождений подземных вод — целая наука, которая требует глубоких и разносторонних знаний. Ни интуиция, ни, тем более, озарение или «волшебство», исключая разве что талант, в этом деле не помогут. Между тем как раз для поисков подземных вод более двух тысячелетий применяется «волшебная» палочка[4].

Так называют обычную лозу или ивовый прут в виде рогатки. Человек берет «волшебную» палочку обеими руками и идет… В том месте, где есть неглубоко подземная вода, прут отклоняется от горизонтального положения и даже начинает вращаться. Лозоходцы (рис. 18) всегда были окружены ореолом таинственности. Во всяком случае, о них ходили легенды. Способ знали древние греки и римляне. Его описал Агрикола. Лозоходцы иногда находили воду, а иногда нет.



Рис. 18. Поиски подземных вод биофизическим методом: слева —  с применением лозы («волшебной» палочки), справа — при   помощи металлической рамки.


Как-то во время поездки в ГДР для чтения лекций в хорошо известной своими геологическими традициями Фрейбергской горной академии я попросил в тамошней библиотеке подобрать литературу о «волшебной» палочке. Популярных изданий тут не было. Только научных книг и только на английском и немецком языках принесли несколько десятков. Поразило и другое: авторы их — геологи, физики, медики.

Авторитеты учения о подземных водах во все времена к использованию «волшебной» палочки относились отрицательно. Проводившиеся проверки, устраиваемые научными учреждениями или компетентными лицами, давали неопределенные результаты. Сходные выводы получены физиками и медиками.

«Выходит, все это мистификация?» — спросит читатель. Не совсем, хотя шарлатанства тут хватало. На самом же деле все обстоит так. Находящиеся на небольшой глубине подземные воды образуют, как это выясняется, биофизические аномалии, которые могут действительно ощущаться людьми с чувствительной нервной системой. Вряд ли случайно, что в последние годы у нас и за рубежом такой поисковый метод (под названием «биофизический» или «биолокационный») пытаются возродить на научной основе. На эту тему состоялись международные и всесоюзные симпозиумы, заслушанные доклады были опубликованы. В научных журналах появились статьи на эту тему.

Современные приверженцы биофизического метода отличаются от пресловутых лозоходцев. Прежде всего отсутствием таинственности и… экипировкой: вместо ивового прута они используют чаще всего металлическую рамку трапецеидальной формы (см. рис. 18). У них, как правило, высшее образование, у некоторых — ученые степени и звания, чаще всего это специалисты по геофизическим методам поисков. Главное — они пытаются понять и объяснить существо метода. Назову их признанного лидера в нашей стране — кандидата геолого-минералогических наук Н. Н. Сочеванова, который наиболее энергично и последовательно «внедряет» биофизический метод поисков. Правда, он и его сторонники делают это несколько односторонне, так как пропагандируют большей частью достижения и не касаются промахов и недостатков.

В Восточной Сибири хорошо известен старший специалист геофизической экспедиции производственного геологического объединения «Бурятгеология» В. К. Мерзликин. При помощи металлической рамки он установил несколько проявлений подземных вод трещинно-жильного типа. Затем на них было проведено подтверждение электроразведкой, после чего участки разбурили. Прогнозы очень хорошо подтвердились. На счету Владимира Константиновича удачная расшифровка структуры рудного поля, трассировка обводненных разломов, обнаружение места утечки из скрытого водовода. Хорошо подтверждаются его предсказания не только глубины водоносных зон, но также ширины и направления потока подземных вод. И все это — с помощью вертящейся рамки.

Приведенный пример не единичен. Вероятно, он и ему подобные позволяют поверить в существование биофизического эффекта. Что же касается его природы и возможностей, то на эти вопросы хочется ответить словами академика АН БССР Г. В. Богомолова: «Пока не ясны причины этого эффекта, но то, что явление может использоваться в поисковых целях — неоспоримый факт, и его надо изучать».

Однако если биофизический метод и получит признание, это еще не решит проблему поисков месторождений подземных вод: он позволяет обнаруживать воду лишь на небольшой глубине. А ведь во многих местах подземные воды приходится выводить с глубины в несколько сот метров. В Сахаре и на Западно-Сибирской низменности глубина распространения пресных подземных вод достигает 800–1000 м. Еще глубже находятся минеральные воды, используемые для извлечения подземного тепла и промышленных компонентов. На территории Якутии пресные подземные воды добываются из-под 300-метровой толщи многолетнемерзлых пород, сквозь которую не всегда «видят» даже геофизические методы.

Подземные воды, представляя собой комплексное полезное ископаемое, по целевому назначению делятся на пресные воды, используемые для хозяйственно-питьевого водоснабжения или орошения земель (это технические, питьевые, оросительные и другие воды), и минеральные воды, которые, в свою очередь, подразделяются на лечебные, термоэнергетические и промышленные.

На подземную гидросферу приходится весьма значительная часть водных ресурсов Земли. Подземные воды, как мы уже отмечали, составляют примерно 1/3 возобновляемых ресурсов пресных вод. Гораздо выше доля минеральных вод: она превышает, по самым скромным подсчетам, 60–75 % гидроминеральных ресурсов, пригодных к освоению.

Использование пресных подземных вод. Значение пресных подземных вод для водоснабжения и орошения наиболее велико в странах, где слабо развита речная сеть или реки сильно загрязнены. Саудовская Аравия полностью, а Тунис, Бельгия и Дания почти полностью обеспечивают свои потребности в воде из подземных резервуаров. В ФРГ еще в 60-х годах питьевое водоснабжение на 82 % и промышленное на 57 % осуществлялось на базе подземных вод.

У нас в стране в первые послевоенные годы доля подземных вод в общем балансе водопотребления была невелика (5 %). Положение в корне изменилось в середине 70-х годов. Более чем в 60 % городов водоснабжение уже целиком ориентировалось на подземные воды. Заметна их роль как источника водоснабжения и орошения в сельском хозяйстве — на эти цели расходуется около 60 % всего водоотбора из подземных резервуаров. По СССР в целом подземные воды сейчас составляют около 20 % используемых водных ресурсов. Эта цифра увеличивается в засушливых районах: для Азербайджана она достигает 60 %, Узбекистана — 50 %, Туркмении и Армении — 40 %.

Официальная цифра добываемых у нас в стране подземных вод (в 1980 г. — 950 кубических метров в секунду, то есть 30 кубических километров в год) сильно занижена, так как отражает только замеряемое их количество. С учетом децентрализованного водоснабжения, потерь при орошении и так далее можно дать более реальную цифру — около 1600–1900 кубических метров в секунду (50–60 кубических километров в год), которая как раз и составляет 20 % суммарного водопотребления.

Очень велика роль подземных вод в водообеспечении жителей пустынь и районов развития многолетнемерзлых пород.

…На память приходит рассказ известного писателя о гидрогеологе, который нашел под знойными песками Сахары громадный бассейн пресных вод. Новелла потрясает — человек, открывший источник жизни, погибает от жажды на краю пустыни!

Как показали недавние исследования, ресурсы пресных вод в недрах Сахары колоссальны. Их вполне хватит, чтобы удовлетворить потребности в воде располагающихся здесь 13 государств. Свирепствовавшая несколько лет засуха ускорила освоение подземных вод. Однако экономически отсталые страны Африки еще не в состоянии рационально использовать их.

В пределах распространения «вечной» мерзлоты на протяжении зимы, которая тут длится 6–8 месяцев, перемерзают практически все, за исключением крупных, водотоки и водоемы. Поэтому подземные воды являются единственным источником круглогодичного водоснабжения. На БАМе, например, они обеспечивают 95 % нужд водопотребителей. Очень благоприятные условия для формирования месторождений пресных подземных вод выявлены в таликах — сквозных талых «окнах» среди мерзлой толщи. Из таких месторождений можно получать более одного кубического метра воды в секунду, то есть снабжать крупных водопотребителей (например, горно-обогатительные комбинаты).

Места выхода на поверхность подземных вод — источники, родники, ключи — почитаются всеми народами. В разные времена струящуюся из них чистую и живительную влагу воспевали поэты. Вспомним хотя бы слова тонкого ценителя природы А. Фета:

Помнишь тот горячий ключ,
Как он чист был и бегуч,
Как дрожал в нем солнца луч
И качался,
Как пестрел соседний бор,
Как белели выси гор,
Как тепло в нем звездный хор
Повторялся.
Действительно, выходы подземных вод — это не только природные феномены. К ним постоянно тянутся люди, поскольку названия их далеко не случайны: это подлинные истоки жизни, ее родники и ключи. На них сооружались причудливые строения в знак благодарности и поклонения. Насколько далеко заходило поклонение, можно видеть из старой восточной шутки: «Мужчина может только дважды встать на колени: чтобы сорвать цветок и напиться из родника».

Есть источники, которые обеспечивают людей питьевой водой с незапамятных времен. Кто бывал в Крыму, наверное, посещал крепость города Чуфут-Кале. Напротив ее ворот журчит родничок — его водой пользовались еще жители древнегреческих поселений, а потом и другие пароды, населявшие Крым. Столь же «вечные» выходы подземных вод известны в Греции и Италии, Средней Азии, Северной Африке, Палестине, Китае, Вьетнаме. «Когда пьешь воду, помни об источнике» — такая пословица существует у многих народов.

Очень популярны и колодцы. Как-то я прочитал статью молдавского писателя П. Боцу. Оказывается, по давней традиции каждому колодцу в Молдавии дается имя мастера, его соорудившего. И мастер старается искуснее другого оборудовать колодец. Поэтому мастера эти живут в народнойпамяти, легенды о них передают из уст в уста. Еще больше роль колодцев в пустыне: вокруг них возникают оазисы, от одного до другого ведется отсчет пути, водоотбор каждого тщательно контролируется.

Как источник водоснабжения подземные воды имеют ряд преимуществ перед поверхностными: они лучше защищены от загрязнения, их ресурсы не испытывают существенных сезонных или многолетних колебаний, обычно они могут быть получены рядом с водопотребителем. В наше время, когда поверхностные воды все сильнее загрязняются, эти и другие причины предопределили все возрастающее использование подземных вод.

Весьма эффективен гидролого-гидрогеологический метод картирования естественных ресурсов подземных вод, предложенный профессором Московского университета Б. И. Куделиным. Основным расчетным параметром является модуль подземного стока — количество подземных вод, которое может быть получено с квадратного километра территории. Определить модуль подземного стока сравнительно просто. Достаточно выделить на гидрографах рек подземную составляющую, то есть вычислить подземное питание, которое в первом приближении и характеризует расход подземного потока. Умножив модуль подземного стока на площадь изучаемой территории, получают естественные ресурсы подземных вод. На картах модуля подземного стока участки с высокими значениями этого параметра отвечают крупным скоплениям подземных вод.

Несмотря на некоторую упрощенность метод Куделина быстро приобрел популярность, позволил подсчитать ресурсы пресных подземных вод СССР и поставить их на службу народному хозяйству.

Труднее определить прогнозные эксплуатационные ресурсы (запасы) подземных вод, поскольку для этого необходимо учитывать технико-экономические условия будущего водозабора. Эксплуатационные ресурсы на территории СССР значительно меньше естественных, особенно там, где слаба изученность (табл. 11). Если же они формируются за счет геологических запасов и искусственных ресурсов (Туркмения, Белоруссия, Азербайджан), то соотношение становится обратным. Близкие цифры получаются при хорошей изученности и отсутствии привлекаемых ресурсов или запасов (Молдавия, Узбекистан). В целом по стране освоено примерно 8–10 % прогнозных эксплуатационных ресурсов подземных вод.



Для питьевого водоснабжения пригодна не всякая подземная вода. К качеству ее предъявляют жесткие требования, закрепленные в ГОСТе 2874-82 «Вода питьевая». Прежде всего по бактериологическим показателям вода должна быть безупречна: в литре может содержаться не более трех кишечных палочек. Строго регламентируется содержание токсических веществ, для некоторых из них установлены следующие предельные нормы (миллиграмм на литр): бериллий — 0,0002, молибден — 0,25, нитраты — 45,0, мышьяк — 0,05, свинец — 0,3, селен — 0,001, стронций — 7,0, фтор — от 0,7 до 1,5, и т. д. Особое внимание обращается на органолептические свойства — запах, вкус, цвет, мутность. Вода считается хорошей, если минерализация не превышает 1 грамма на литр. Предельно допустимая жесткость также ограничена. Некоторые из растворенных веществ (сульфаты или хлориды) придают ей специфический вкус, другие (медь) — мутность, третьи (железо) — цвет и так далее. Поэтому наличие этих веществ также ограничивается и должно быть не более (миллиграмм на литр): хлориды — 350, сульфаты — 500, железо — 0,3, марганец — 0,1, медь — 1,0, цинк — 5,0, алюминий — 0,5.

Качество подземной воды обычно гораздо выше, чем поверхностной. В ней собран как раз тот «букет» микрокомпонентов, который необходим организму человека. Наоборот, в воде рек или озер отдельные компоненты отсутствуют или содержатся сверх допустимых концентраций, что требует дополнительных расходов на обработку воды для доведения ее до кондиций ГОСТа.

Требования, предъявляемые к оросительным водам, не столь жесткие. Тут допускается даже применение слабосоленых и сточных вод. В ряде стран (Египет, Индия) из-под земли добывается от 25 до 60 % вод, направляемых на орошение. Широко используются для этих целей подземные воды и у нас в Средней Азии.

О значении мелиорации свидетельствуют такие цифры: орошаемые земли, составляя около 20 % обрабатываемых массивов, дают 2/3 мирового производства зерна, фруктов и других сельскохозяйственных культур. У нас орошается 7 % всех земель. Продовольственной программой СССР на период до 1990 года намечается значительно увеличить орошаемые площади.

Одна из важнейших проблем современной мелиорации — качество оросительных вод. Пока орошение ориентировалось на пресные речные воды, ее не возникало. Но когда во всех странах перешли к использованию в широких масштабах солоноватых и соленых подземных вод, почвы стали засоляться — площадь засоленных земель в 70-х годах достигла 20 % всех орошаемых земель мира. Специалисты по мелиорации пришли к выводу, что полив можно успешно осуществлять даже солеными водами с минерализацией до 10–12 граммов на литр, но в таком случае требуется применение более совершенных методов орошения (вертикальный дренаж, «капельное» орошение и так далее). Проблема качества оросительных вод включает также их состав, режим орошения, климатические и почвенные условия орошаемых территорий.

Использование минеральных вод. Минеральные воды, в отличие от пресных, обладают какими-либо особыми физическими свойствами (например, высокой температурой), а чаще повышенной концентрацией минеральных веществ, растворенных газов или органических соединений. Термин «минеральные воды» достаточно неопределенен. Так обычно называют только те воды, которые имеют лечебные свойства, иначе говоря, считают «минеральные воды» эквивалентом «лечебных вод». Такое сужение понятия неоправданно. В силу присущих минеральным водам особенностей, перечисленных в их определении, правильнее употреблять это понятие в более широком смысле, поскольку минеральные воды используются не только в лечебных целях, но также для получения тепловой энергии и извлечения промышленных компонентов.

Лечебные воды. Когда человек лечится на курортах, он пьет минеральную воду или принимает ванны. Названия здравниц — Виши, Карловы Вары, Баден, Мацеста, Боржоми или Белокуриха — ассоциируются с избавлением от болезней и недугов. В СССР функционирует даже целый курортный район — Кавказские минеральные воды (сокращенно КМВ), в который входят города-курорты Пятигорск, Кисловодск, Ессентуки и Железноводск.

Названия многих минеральных вод отражают их лечебные свойства: «нарзан» — напиток богатырей, «аршан» — святая, или целебная, вода и т. д. Как правило, овеяно легендами и появление на них здравниц. Вот как легенда рассказывает о возникновении старейшего в Европе (действует с XIV века) курорта Карловы Вары (аналогичные истории известны и на других здравницах).

…Карл IV — император Священной Римской империи и король Чехии — охотился с дружиной. Вдруг на поляне показался великолепный олень. Просвистела стрела, и олень прыгнул на скалу, пытаясь спастись. За ним бросились собаки. Олень ударом рогов убил одну из них и исчез за скалой. Карл поскакал за ним и увидел горячий ключ: в него прыгнул раненый олень, выскочил оттуда здоровый и скрылся в кустах. Придворный медик Баер признал воду целебной, и Карл решил построить здесь курорт. Его назвали Карловы Вары, что означает «Термы Карла».

При лечении заболеваний желудочно-кишечного тракта употребляют углекислые воды таких, например, типов, как «ессентуки», «нарзан» или «боржоми», и разновидности соленых вод. Сероводородные (гидросульфидные) воды мацестинского и иных типов помогают при болезнях сердечно-сосудистой системы, нарушениях опорно-двигательного аппарата и нервных расстройствах. Эти же заболевания, а также болезни органов кровообращения и последствия ранений и травм хорошо лечат термальные воды. Наличие в воде радона, железа, брома и других микроэлементов увеличивает лечебный эффект, позволяя избавляться от сопутствующих болезней.

Для интересующихся в таблице 12 даны показатели, по которым подземные воды относятся к лечебным, и приводятся их названия. К сожалению, сюда не вошли типы лечебных вод — их слишком много.



Пригодные для лечения воды встречаются во всех без исключения районах земного шара. Очень богат ими Кавказ, а за рубежом — Центральная Европа. По ресурсам и разнообразию типов минеральных лечебных вод им не уступает, как показали исследования, выполненные под руководством профессоров В. Г. Ткачук и Н. И. Толстихина, южная часть Восточной Сибири.

Там выявлены, кажется, все типы лечебных вод, известные на территории СССР. Углекислые холодные воды распространены в районах недавней вулканической деятельности и используются на курортах Дарасун, Кука, Молоковка. Много в Байкальской рифтовой зоне, представляющей область современного горообразования и сейсмической активности, термальных вод, газирующих азотом и метаном. Если Байкал именуют «жемчужиной» Сибири, то многочисленные горячие источники — это драгоценная оправа, в которую она вставлена. Некоторые из них используются на здравницах Горячинск, Ильинка, Гарга. Интересна гидротермальная область Восточного Саяна — здесь обнаружены не только холодные углекислые воды и азотные термы, но также углекислые термы (Аршан, Шумак, Чойган). На Сибирской платформе повсеместно встречаются хлоридные натриевые рассолы и сульфатные кальциевые воды, обязанные своим появлением выщелачиванию каменной соли и гипса (курорты Ангара, Усолье, Усть-Кут). Встречаются и весьма дефицитные разновидности лечебных вод — аналоги мацестинского и трускавецкого типов.

Такое разнообразие гидроминеральных ресурсов давно привлекало к этому региону исследователей минеральных вод. Томский профессор-бальнеолог М. Г. Курлов на примере сибирских (в особенности юга Восточной Сибири) минеральных вод предложил наглядное изображение химического состава воды в виде «псевдодроби»: «формула Курлова» сейчас применяется во всем мире и заслуженно носит имя автора. Старейшина советских гидрогеологов Н. И. Толстихин одним из первых установил закономерности распространения минеральных лечебных вод юга Восточной Сибири, выделив здесь гидроминеральные провинции и области; выявленные закономерности впоследствии он распространил на всю территорию Советского Союза. Многое для познания гидроминеральных ресурсов этого региона сделала профессор В. Г. Ткачук: монографическое издание «Минеральные воды юга Восточной Сибири» было осуществлено только благодаря ей. Валентина Георгиевна создала гидрогеологическую школу в Восточной Сибири, представители которой изучали минеральные воды на севере Восточной Сибири, в Туве, Прибайкалье, на БАМе.

Сейчас имеются описания минеральных лечебных вод различных районов мира. Впервые такую сводку выпустили в 1968 году к XXIII сессии Международного геологического конгресса. Под редакцией доктора геолого-минералогических наук В. В. Иванова составлены карта минеральных вод территории СССР и подробный кадастр, характеризующий каждое проявление лечебной воды в нашей стране. На минеральных водах у нас функционируют 273 курорта и 170 других здравниц.

Одновременно с использованием минеральных вод курортами и здравницами производится их розлив в бутылки, при этом различают питьевые лечебные (8–12 граммов на литр), лечебно-столовые (2–4 грамма на литр) и столовые (1–2 грамма на литр) воды. Наиболее широко розлив практикуется в Центральной Европе: во Франции, Швейцарии, Италии и ФРГ иа одного жителя расходуется более 10 литров минеральной воды в год. У нас в 1980 году выпущено 2400 миллионов бутылок. К 1985 году эту цифру намечается довести до 5200 миллионов, что позволит увеличить ежегодное потребление минеральной воды каждым жителем с 4,5 литров в 1980 году до 7,5 литров в 1985 году.

Термоэнергетические воды, или гидрогеотермальные ресурсы, включают собственно термальные воды (температура более 35 °C), пароводяную смесь (парогидротермы) и «сухой» пар. Это один из видов нетрадиционной и возобновляемой энергии, при этом возобновление может происходить как естественным, так и искусственным[5] путем.

Такие ресурсы имеют широкое, хотя и локализованное, распространение. Они встречаются в местах, где тепловому потоку свойственны повышенные значения, — в рифтовых зонах, областях современного вулканизма и новейшего горообразования, а также в активизированных складчатых сооружениях и молодых платформах.

Целесообразность освоения гидрогеотермальных ресурсов зависит прежде всего от хозяйственного назначения и экономического эффекта, получаемого по сравнению с другими видами энергии. Термоэнергетическое их назначение самое разнообразное: электроэнергетика, коммунально-бытовые и промышленные нужды, сельское хозяйство.

В СССР, где прогнозные эксплуатационные ресурсы термоэнергетических вод колоссальны, уже начала работать первая геотермальная электростанция (ГеоТЭС) на базе Паужетского месторождения парогидротерм. Ее начальная мощность 5 мегаватт, в перспективе же — до 25 мегаватт. Намечается строительство мощной (200 мегаватт) ГеоТЭС для обеспечения электроэнергией Петропавловска-Камчатского, а также нескольких мелких — мощностью 10–75 мегаватт. Перспективны в этом отношении, помимо Камчатки, Кавказ, Западная Сибирь, Карпаты.

С незапамятных времен горячие воды используются для отопления и хозяйственных нужд. Да и сейчас на эти цели приходится «львиная» доля подземного тепла. Из учтенного количества добываемых в СССР термоэнергетических вод, которое составляло в 1980 году 42 миллиона кубических метров, 23 % расходуется на коммунально-бытовые цели и 19 %—в промышленности, главным образом на Северном Кавказе и в Закавказье. Отопление помещений и горячее водоснабжение в Махачкале, Кизляре, Избербаше, Грозном, Тбилиси, Зугдиди основано на термоэнергетических водах.

Вот характерный пример. Недавно в Кизляре (Дагестан) отказались от строительства новых котельных. Закрываются и старые: почти весь город уже отапливается подземным теплом, с его помощью выращивают овощи и цветы. Термальные воды постепенно заменяют уголь и нефть.

Что же касается Тбилиси, то горячие воды здесь давно применяются в бытовых целях. Вспомним хотя бы знаменитые «серные» бани, побывав в которых, А. С. Пушкин написал: «Отроду не встречал я…ничего роскошнее тифлисских бань». Да и самим названием своим город обязан горячим водам, так как «Тбилиси» переводится на русский язык как «теплое место». Сейчас новый жилой район города Субуртало целиком обогревается подземным теплом.

Весьма заманчивым представляется бытовое и хозяйственное использование подземного тепла в суровых северных районах Советского Союза. Это сулит не только экономические выгоды, но и, что гораздо важнее, улучшение социальных и культурно-бытовых условий населения. А термальными водами районы развития многолетнемерзлых пород, в частности, осваиваемая полоса Байкало-Амурской железнодорожной магистрали, богаты. Есть термальные воды и за Полярным кругом: на Северном Урале, в Якутии, на Чукотке. Профессионально описал такой источник сибирский геолог, ученый и поэт П. Драверт:

Близ Ледовитого седого океана
В Колымском крае есть горячие ключи.
Зимой красуется над ними шлем тумана,
А выше — сполохов чеканятся мечи.
Но, в почве ледяной дорогу пролагая,
По-прежнему, ключи, как в летний день,
бурлят
И, влажной теплотой снега уничтожая,
Потоки вод живых в расселинах струят.
Трудно сказать: какой выход термальных вод имел в виду Драверт. Скорее всего «Талый ключ» в истоках Колымы, Сейчас здесь благоустроенный санаторий с большим плавательным бассейном.

По количеству подземного тепла, приходящегося на душу населения и используемого преимущественно для коммунально-бытовых нужд, первое место в мире занимает Исландия. В оранжереях здесь выращивают даже виноград и бананы. Централизованные системы отопления и горячего водоснабжения (их более 30), включающие протяженные (до 21 километра) трубопроводы и распределительные резервуары, обеспечивают теплофикацию 87 % жилого фонда столицы страны Рейкьявика. Широко применяется термальная вода в промышленности, для плавательных бассейнов. Вообще же в Исландии термальной водой пользуются 135 тысяч человек, что составляет 61 % населения. Эту цифру в перспективе намечается увеличить до 80–85 %. Вода с температурой от 48–56 до 87–114 °C выводится скважинами с глубины не более 1000–1200 метров. Исландия в значительной мере избавилась от ввоза нефти и угля.

Достаточно разнообразен спектр использования горячих вод в сельском хозяйстве: отопление парников, обогрев почвы, ранний полив (ускоряющий рост растений), устройство рыборазводных прудов. В СССР таким образом обогревается около 50 гектаров теплиц. А вообще-то подземное тепло стараются использовать комплексно. Например, Мостовский геотермальный комплекс в Краснодарском крае отбираемую из недр горячую воду расходует на тепличном комбинате, обогревает ею поселок и еще использует на другие производственные цели (приготовление кормов, рыборазводные пруды, тепловое орошение полей).

И все же главное назначение подземного тепла — электроэнергетика. В связи с энергетическим кризисом, охватившим многие страны, большая роль начинает отводиться гидрогеотермальным ресурсам. В 1980 году мировая мощность ГеоТЭС составляла немногим более 2000 мегаватт, то есть не достигала даже 1 % от всей вырабатываемой в мире электроэнергии. Однако уже в 1985 году она должна увеличиться в 3 раза, а в обозримом будущем даже в 6–10 раз, причем в основном за счет стран Азии и Америки.

Так как человечество только начинает осваивать гидро-геотермальную энергию, роль ее в мировом энергетическом балансе пока ничтожна. Однако она возрастает быстрее, чем доля традиционных видов энергии: скажем, 15 тысяч мегаватт, которые в США собираются получать на ГеоТЭС через 10 лет, уже составляют 2 % общего производства электроэнергии. А на Филиппинах к 1985 году намечено довести мощность геотермальных электростанций до 18 % от общей выработки энергии.

В Японии разработан правительственный проект «Северное сияние», цель которого — обеспечить за счет гидро-геотермальных ресурсов 1/3 потребности страны в электроэнергии.

Промышленными водами, или «жидкой рудой», обычно принято называть природные воды с концентрацией отдельных компонентов, обеспечивающей экономически выгодную добычу и переработку.

Соленые воды и рассолы, выводимые источниками, очень давно используются для получения поваренной соли. Об этом упоминал еще древнегреческий историк Геродот. На Руси в XIII веке для снабжения солеварен рассолом практиковалось «верчение» скважин и обсадка их деревянными трубами. Добыча поваренной соли из подземных рассолов в больших масштабах производилась также в Сибири, Германии, Китае, на Ближнем Востоке. С XIX века в Италии из парогидротерм добывается борная кислота, а в начале XX века из рассолов и морской воды — бром и иод. Положение изменилось во второй половине нашего столетия, когда резко увеличилось количество извлекаемых компонентов.

Сейчас в мире из промышленных вод получают весь иод, 70% брома, значительную часть лития, борной кислоты и глауберовой соли, а также других элементов. Для добычи поваренной соли, кроме рапы озер, теперь применяются главным образом искусственные рассолы, получаемые в результате выщелачивания пластов каменной соли. Кондиционными считаются такие воды, содержание элементов в которых превышает (в миллиграммах на литр): брома — 200, иода — 10, бора — 100, лития — 10, рубидия — 3, цезия — 0,5, германия — 0,05, калия — 1000, стронция — 300. Иногда извлекают магний, вольфрам, уран, радий. Рентабельность эксплуатации промышленных вод зависит и от других условий, среди которых следует назвать производительность скважин и утилизацию отработанных вод.

Промышленные воды не зря называют «жидкой рудой». Показанный на рис. 10 рассол имеет, наряду с хлоридом кальция, уникальную концентрацию брома, магния, стронция, калия, бора, редких щелочей. Можно сослаться и на металлоносный термальный рассол полуострова Челекен: изливающие его скважины ежегодно выносят десятки тонн цинка, меди и других металлов.

Насколько важны для использования «жидкие руды», можно судить по иодным водам и бромным рассолам, обнаруженным в Сибири. Иодные воды Западно-Сибирской равнины могут обеспечить сырьем завод с производительностью, несколько превышающей современное производство иода в СССР. В Восточной Сибири реальна возможность организации добычи брома, превышающей его потребность в нашей стране.

Промышленные воды — новый вид нетрадиционного и комплексного минерального сырья, промышленное их значение в полной мере пока оценить трудно. Оно быстро возрастает, что подтверждается обширной информацией о проводимых в развитых странах технологических исследованиях способов комплексного извлечения из промышленных вод различных элементов (США, Япония, Англия, ФРГ, Италия, Франция). Со временем переработка «жидких руд», вероятно, примет массовый характер. «Рассолы, — сказал несколько лет назад академик А. В. Сидоренко, — станут такими же источниками полезных ископаемых, как и твердые минеральные концентрации».

В подземных водах обнаружены почти все химические элементы. Во всяком случае, те, которые пытались определить. Многие редкие и рассеянные элементы не всегда образуют природные скопления, поэтому само присутствие их в природном растворе может представлять практический интерес.

А не находятся ли в подземных водах неизвестные химические элементы, клеточки которых в периодической системе Д. И. Менделеева пока пусты? Такой вопрос поставил первооткрыватель шести последних (с номерами от 102 по 107) из числа известных трансурановых элементов академик Г. Н. Флеров. Возможность их обнаружения весьма вероятна в вулканических, рифтовых и активизированных областях, где поступающие из мантии летучие соединения сверхтяжелых элементов сравнительно легко могут обогащать подземные воды,

Начались поиски. Были отобраны пробы воды из гидротерм Камчатки, Забайкалья, Кавказа. Меня Георгий Николаевич попросил доставить сухие остатки рассолов Сибирской платформы. Увы, ничего похожего на искомые химические элементы и продукты их деления…

Однако предположение Флерова, кажется, подтвердилось в рифтовых зонах и областях альпийской активизации, где в двух пунктах из термальных вод получены сухие остатки, которые в отдельных случаях отличались слабыми импульсами, сходными с таковыми при делении ядер трансурановых элементов. На помощь физикам пришли гидрогеологи Института земной коры СО АН СССР и оконтурили зоны глубинных разломов. Перспективные на «сверхэлементы» участки совпали с гелиевыми аномалиями. Пока не ясна природа самих импульсов. Что это — уже известные или новые (скажем, аналог свинца с номером 114) трансурановые элементы? Полученная информация обнадеживает, однако она еще недостаточна для определенных выводов. Совместные работы физиков и гидрогеологов продолжаются.

ВРАГ И РАЗРУШИТЕЛЬ

Раздвинем горы, под водой

Пророем дерзостные своды.

А. С. Пушкин

Гидрогеологические работы должны опережать работы по изысканию наших материальных ресурсов… опережать эксплуатационные, геологоразведочные и поисковые работы.

И. М. Губкин
Подземные воды?! Да, они. Они не только один из источников благосостояния человечества и комплексное полезное ископаемое, но порой также коварный враг, вызывающий разрушения. Тогда приходится бороться с подземными водами. Борьба в отдельных случаях ведется трудная и упорная, требует значительных материальных затрат.

О подземных водах, ставших врагом и разрушителем, можно говорить много, поскольку в такой роли они выступают довольно часто: при проведении горных работ, в гидротехническом, дорожном и других видах строительства, активизации физико-геологических процессов. Ограничимся рассмотрением отрицательного влияния, при устранении которого требуются специальные мероприятия по борьбе с подземными водами.

Наиболее трудна борьба на месторождениях полезных ископаемых, если они представлены сильно обводненными породами (карстовыми, мощными толщами рыхлых отложений, зонами тектонических нарушений). Тогда для отработки необходимы дорогостоящий водоотлив или особые способы осушения месторождений. К последним относятся цементация, водопонижение, замораживание. Освоение сильно обводненных месторождений приходится откладывать на будущее. Так было, например, с железорудными месторождениями Курской магнитной аномалии, которые открыли еще в первые годы Советской власти, но из-за сложности гидрогеологических условий стали разрабатывать только в 50-х годах, когда появились надлежащие водопонизительные установки. Некоторые месторождения в связи с ростом стоимости водоотлива перестают быть рентабельными. Такая судьба постигла угольные месторождения Кизеловского бассейна на Урале и Слюдянское месторождение флогопита в Прибайкалье.

Прорывы подземных вод к эксплуатационным горным выработкам выводят из строя горные предприятия и вызывают угрозу для жизни людей. На откачку затопленных выработок тратятся обычно большие средства и много времени. Так, осушение шахт Донбасса, затопленных фашистскими оккупантами во время Великой Отечественной войны, длилось около трех лет и обошлось нашему государству в несколько сот миллионов рублей. Опасны внезапные прорывы подземных вод. От них стараются уберечь горные выработки путем бурения опережающих забой скважин. Однако это не всегда удается — известны случаи, когда проникающая с передовых штреков или шахт вода заполняла все отработанное пространство.

Самыми обводненными считаются месторождения в условиях карста. Из карстовых полостей в горные выработки низвергаются потоки воды, на отдельных месторождениях они в сумме составляют 10–20 тысяч кубических метров в час (3–5 кубических метров в секунду). Их осушение сочетает улавливание поверхностного стока, опережающее водопонижение и так далее. Именно на них чаще всего происходят аварийные прорывы, приводящие к затоплению рудников. Водоотлив удорожает стоимость полезного ископаемого, так как на каждую его тонну требуется откачать несколько сот кубометров воды.

Сильно обводнены также месторождения в рыхлых отложениях. Когда-то мне приходилось изучать гидрогеологию печально известных Ленских приисков. Благодаря значительным уклонам речных долин аллювиальные россыпи здесь дренируются весьма оригинально — штольнями свободного водослива, которые проходятся под плотиком в коренных породах. Отсюда название дренажей — «бедрок» («выработка в породах основания» по-английски) или «вассерштрек» («водяной штрек» по-немецки). Устья таких выработок выводят целые реки и имеют расход до 1–3 кубических метров воды в секунду.

Таким образом, из рудников, шахт и карьеров откачивается громадное количество воды. В наше время горнодобывающие предприятия неимоверно расширяют фронт горных работ, проникают на глубины более одного километра и дренируют очень большие пространства. Если в СССР в 50-х годах ежегодная добыча составляла 2 миллиарда тонн минерального сырья, то в конце 70-х годов — уже 14 миллиардов тонн. Соответственно возрос и водоотлив: на каждую тонну полезного ископаемого приходится в среднем 1–10 кубометров откачиваемой воды, а на никоторых месторождениях и гораздо больше.

Коварство подземных вод — иначе это не назовешь — обнаруживается на соляных месторождениях. Проникновения воды к горным выработкам, за исключением разве что пересыщенных рассолов из запечатанных полостей, тут вообще нельзя допускать, поскольку она легко расширяет трещины в соляном теле, что облегчает связь с поверхностью и в конечном итоге вызывает гибель солерудников. Отработка месторождений должна проводиться таким образом, чтобы горные выработки находились в солях, не затронутых современным карстом (см. рис. 13). Тогда горные выработки существуют десятилетиями в совершенно сухом состоянии (например, Артемовское месторождение на Украине). К сожалению, известно немало случаев прорыва воды к солерудникам. На территории ГДР и ФРГ некоторые шахты были затоплены в течение нескольких суток и даже часов. Статистика здесь ужасна: из 255 солерудников в первой половине XX века 88, то есть 1/3, погибли в результате проникновения подземных вод.

Не берусь судить, что имел в виду А. С. Пушкин, когда создавал строки, приведенные в эпиграфе к этой главе. Его двустишие оказалось пророческим.

Горы и раздвигаются туннелями. Такими, как Северо-Муйский, прокладываемый на БАМе и имеющий длину более 15 километров. Это самый протяженный транспортный туннель в СССР. И самый трудный (о чем мы уже упоминали) в гидрогеологическом отношении, ибо основной враг строителей здесь — вода. Ее не только много (в среднем с каждого километра проходки часовой водоприток достигает 1000 кубометров, то есть 0,3 кубических метра в секунду); главное, прорывы возникают неожиданно, порой застают проходчиков врасплох. Подобные аварии случались при прокладке в довоенное время московского метро и показаны даже в художественных кинолентах (вспомним хотя бы «Добровольцев»).

Создает человек и «дерзостные своды», прокладываемые под водой. Вот хотя бы туннель Сейкан, который сооружается с 1971 года в Японии между островами Хонсю и Хоккайдо. Его длина около 54 километров. И тут вода сильно мешала строителям. Одно время, когда в выработки прорвалась морская вода, хотели даже отказаться от этого грандиозного проекта. Но научная мысль и инженерный опыт нашли выход: с помощью силикатизации доступ воды был ликвидирован.

Разрушительная деятельность подземных вод проявляется в просадке зданий и дорожного полотна. Фильтрационные токи под основанием или в «плечах» плотин снижают прочность таких гидротехнических сооружений: некоторые плотины рухнули именно по этой причине. Опасно не только механическое разрушение, но и корродирующее (а попросту — разъедающее) воздействие подземных вод на бетонные и железобетонные фундаменты сооружений.

От режима подземных вод зависит активность оползней, которые доставляют много хлопот, скажем, на берегах Волги и Днепра, Черноморском побережье Крыма. Чем интенсивнее питание подземных вод и чем больше их поступает на поверхность скольжения, тем энергичнее протекает оползневой процесс. Аналогичным образом возникают и обвалы.

Серьезные трудности строителям доставляют подземные воды в области распространения многолетнемерзлых пород. Тут они настоящий бич; при замерзании грунт расширяется, а при оттаивании приходит в плывунное состояние. Отсюда пучения и просадки, так называемый термокарст и солифлюкция (течение грунта при избыточном водонасыщении). Коварством, о котором так много говорят и которое так затрудняет строительство, «вечная» мерзлота обязана главным образом подземным водам.

Специфические образования криолитозоиы — наледи. Они возникают там, где к поверхности пробиваются подземные воды. Порой неожиданно, если инженерные сооружения (дороги, здания и так далее) изменяют пути движения подземных вод. В городах Бодайбо или Мирном они появляются, например, посреди улиц, а на БАМе — обычно вдоль дорожного полотна (рис. 19). Если продолжается рост наледей, полотно разрушается. Иногда наледи дают о себе знать прямо в домах, поскольку из-за нарушения мерзлотно-гидрогеологического режима подземные воды стремятся излиться в наиболее протаявшем месте, а это чаще всего именно погреба домов. Примеры подобных курьезов можно продолжить: наледи, неожиданно возникшей на полотне одной из железнодорожных станций Дальнего Востока, потребовался всего один час, чтобы приморозить к рельсам колеса стоявшего паровоза. Однако дело не в курьезах: наледеобразование осложняет и удорожает строительство.



Рис. 19. Типовая схема образования наледей на западном участке БАМа (от Усть-Кута до Тагоры).

1 — наледь; 2 — выход подземных вод; з — уровень подземных вод; 4 — слой почвы и рыхлых отложений; 5 — водоносный горизонт; 6 — водоупорные породы.


Чтобы не было разрушительных и прочих нежелательных проявлений подземных вод, требуется хорошее знание конкретной гидрогеологической обстановки. Опираясь на закономерности формирования и распространения подземных вод, гидрогеологи в состоянии прогнозировать и величину водопритоков к горным выработкам, и возможные деформации сооружений, и наледеобразование. Они дают заключения о природе этих процессов, чтобы проектировщики их предвидели. Грамотное использование рекомендаций позволяет строителям успешно с ними бороться. Аварийные ситуации, как правило, возникают только тогда, когда должным образом не изучена гидрогеологическая ситуация или когда строители по разным причинам отказываются выполнять рекомендации гидрогеологов.

Итак, действовать надо в соответствии с пословицей: «Не зная броду, не лезь в воду». Применительно к горному делу или к любому виду строительства это означает, что сначала следует выяснить гидрогеологическую обстановку и только потом проектировать те или иные сооружения.

УСТРАНИТЬ ОПАСНОСТЬ!

Не будем, однако, слишком обольщаться нашими победами над природой. За каждую такую победу она нам мстит. Каждая из этих побед имеет, правда, в первую очередь те последствия, на которые мы рассчитываем, но во вторую и третью очередь совсем другие, непредвиденные последствия, которые очень часто уничтожают значение первых.

Ф. Энгельс
Откуда возникла угроза подземной гидросфере? Мы привыкли пользоваться природными ресурсами — земельными, водными, минеральными, лесными и т. д. Собственно, современную цивилизацию люди создали только потому, что использовали эти богатства. Однако поступали они не всегда разумно, подчас и в ущерб природе. И вот пришло время, когда казавшиеся неистощимыми природные ресурсы стали иссякать или терять свое былое качество. Не избежала этого и подземная гидросфера.

На тему прогрессирующего загрязнения и истощения внутриземных вод сейчас пишут много. Важно уяснить причину опасности. Тезис: «Не трогай природу» (в том числе и подземную гидросферу) явно невыполним. На сей счет не надо строить иллюзий — жить, не оказывая воздействия на природную среду и не используя ресурсов, нельзя было на заре цивилизации и тем более невозможно в наше время. В век научно-технической революции воздействие производственной деятельности человека на природу, особенно на такой ее элемент, как вода, принимает глобальный характер.

Влияние производственной деятельности человека (антропогенного воздействия или — по современной терминологии — техногенной нагрузки) выражается в загрязнении и истощении прежде всего подземных вод, в меньшей степени — почвенной влаги, парогидротерм (пароводяной смеси), связанной породами воды. Если в первой половине XX века загрязнение и истощение проявлялись главным образом в верхних горизонтах, то теперь эти нежелательные явления заметны и на больших глубинах. Приостановить их трудно — воздействие техногенных нагрузок все возрастает. Поэтому со всей остротой встает проблема охраны ресурсов подземной гидросферы.

Мне не хотелось бы перегружать книгу цифрами, но без них не обойтись. Пусть читатель вдумается в следующее.

1. Подсчитано, что за последние 30 лет использовано втрое больше сырья и, следовательно, произведено втрое больше отходов, чем за всю предыдущую историю человечества. Утилизация этого громадного количества отходов как раз и служит источником загрязнения поверхностных и подземных вод, поскольку именно их резервуары традиционно используются как коллекторы для сброса отработанных вод. По этой причине к началу 70-х годов XX века на земном шаре была загрязнена почти 1/6 часть поверхностных водотоков и водоемов. Загрязнители просачиваются через почву и попадают в подземные воды — практически во всех крупных городах мира и индустриальных центрах оказались негодными для водоснабжения грунтовые воды. Особо опасные стоки в больших масштабах начинают сбрасывать в глубокие горизонты, при этом за каждые 10 лет количество захороняемых вод возрастает в 2–10 раз (данные по разным странам).

2. О прогрессирующем истощении подземных резервуаров можно судить хотя бы потому, что за 1940–1980 годы использование подземных вод в СССР возросло в 15 раз, а количество откачиваемых вод при осушении месторождений увеличилось в 15 раз уже за последние 25 лет. Громадные депрессионные воронки вызвали снижение уровня подземных вод (местами более 50–100 метров), некоторые подземные водозаборы перестали функционировать.

3. «Оборотной стороной» научно-технического прогресса является постоянно растущий перечень загрязнителей: в 1944 году нормировалось содержание 13 загрязняющих веществ, в 1960 году 70, в 1967 — 180, в 1973 — 250, в 1980 году — около 500.

4. Согласно недавним подсчетам американских футурологов, к 2000 году потребность в воде на Земле увеличится в 2 раза, а количество пресной воды на одного человека уменьшится на 35 %.

Основную угрозу водным ресурсам представляет загрязнение. Источники водоснабжения — реки, озера и подземные резервуары — одновременно используются для сброса сточных вод. Вот что при этом происходит: один кубометр стоков загрязняет примерно 10–13 кубических метров чистой воды, а попадание некоторых органических и радиоактивных веществ порой требует стократного или даже тысячекратного разбавления.

Наиболее легко загрязняются озера. Хорошо известна судьба озера Эри в США: в нем не осталось ничего живого, и некогда прекрасное озеро превратилось в вонючий водоем. Я видел бухту Неаполя и Токийский залив: они производят отталкивающее впечатление, представляя дурно пахнущие, покрытые толстой нефтяной пленкой или плавающими отбросами лагуны. В столь же плачевном состоянии находятся некоторые реки, в частности возле крупных городов и больших промышленных предприятий, имеющих значительные стоки.

Подземные резервуары загрязняются не столь легко и быстро, как поверхностные водотоки и водоемы. Они в той или иной степени защищены из-за трудности естественного проникновения загрязнителей в земные недра и хорошей сорбционной способности горных пород, вызывающей поглощение загрязняющих веществ.

Однако, несмотря на защищенность, загрязнители тем не менее поражают подземные воды. Вот основные виды загрязнений: промышленное — обязано сточным водам различных отраслей промышленности, сельскохозяйственное — от внесения в почву удобрений и ядохимикатов, коммунально-бытовое — вследствие сброса нечистот в пределах населенных пунктов, за счет внедрения морских или глубоких соленых вод и, наконец, в результате ядер-ных взрывов, как это имело место, например, в США.

Все виды загрязнений опасны. По интенсивности и масштабам воздействия на подземную гидросферу наибольший вред наносит промышленное загрязнение, в частности сточные воды химических, нефтеперерабатывающих и целлюлозно-бумажных предприятий. Это они отравляют озера и реки. Стремясь обезопасить поверхностные воды, на ряде предприятий за рубежом сбрасывают в подземные резервуары наиболее ядовитые стоки, не поддающиеся очистке. Все это, несмотря на жесткие защитные мероприятия, постепенно приводит к загрязнению подземной гидросферы, поскольку объемы вырабатываемых промышленных стоков растут, как мы видели, очень быстро.

Да и «непредвиденных» аварий становится с каждым годом все больше. О них часто сообщается в печати развитых капиталистических стран. Это, прежде всего, утечки загрязнителей из трубопроводов, хранилищ стоков, отстойников и так далее. Назову также аварию, когда лопнувший нефтепровод, подобно известным катастрофам танкеров, загрязнил на долгие годы все вокруг; одновременно с поверхностным водотоком отравленным оказался гидравлически связанный с ним грунтовый водоносный горизонт.

Большой вред наносит естественным подземным резервуарам фильтрация сточных вод сквозь почву из мест их хранения. Такие случаи происходят в результате переполнения хранилищ или различного рода неисправностей. Точно такой же результат имеет попадание ядохимикатов или удобрений, используемых при обработке почвы. Тут загрязнение приобретает площадной характер. Все это в конечном итоге ухудшает качество подземных вод.

Даже казалось бы не имеющая отношения к подземной гидросфере авиация порой оказывает на нее негативное воздействие. В качестве типичного примера можно привести случай, который произошел на одной из военно-воздушных баз США. О нем стало известно, а о многих подобных происшествиях зарубежная печать старается хранить молчание.

…Самолет, совершая вынужденную посадку, разлил по поверхности земли около 110 тысяч литров реактивного топлива. Произошло это непосредственно на территории военно-воздушной базы. Водоносный горизонт трещиноватых кристаллических пород оказался так сильно загрязненным, что только через 15 лет удалось восстановить существовавшую ранее систему водоснабжения из буровых скважин…

Конечно, подземная гидросфера загрязняется не столь интенсивно, как поверхностные воды. Но, как показывает только что приведенный пример, если такие вещества попали в подземные резервуары, то избавиться от них бывает гораздо труднее, чем от загрязнения рек, озер или морей.

Другой вид угрозы — истощение ресурсов подземной гидросферы, прежде всего подземных вод. Причиной его служит интенсивный водоотбор из земных недр (в количествах, превышающих естественное или искусственное восполнение).

Большей частью это дело вынужденное, и человек идет на него сознательно, когда забор воды, скажем, имеет целью осушение месторождений полезных ископаемых иливодопонижение для сооружения подземных коммуникаций. Так, на железорудных месторождениях ряда областей СССР, где эксплуатация ведется на глубинах более 400 метров, частично осушены водоносные горизонты, перекрывающие рудную залежь. На нефтегазовых месторождениях нередко извлекаются трудновозобновляемые термы или рассолы. При различных видах строительства приходится осушать котлованы и откачивать при этом громадные количества воды. То же самое имеет место при добыче каменного и бурого угля, полиметаллов.

Порой водопонизительными скважинами выкачиваются из земных недр целые реки. Естественным путем такие потери уже не могут восполниться. И без этого не обойтись! Иначе нельзя вести добычу полезных ископаемых и возводить подземные сооружения. Однако во многих случаях истощение происходит из-за недостаточного знания гидрогеологической ситуации, сочетающегося с неумеренной эксплуатацией подземных вод.

Здесь уместно привести пример эксплуатации водозаборных колодцев на западе США. Из-за работы на «износ» перестали фонтанировать или вообще иссякли тысячи скважин. Штат Аризона, где водоснабжение и орошение целиком идут за счет подземных вод, стоит перед настоящей катастрофой; на 100 и более метров снизился уровень в основном подземном резервуаре Огаллала, протянувшемся от Небраски до Техаса. В приморских районах из-за истощения водоносных горизонтов происходит внедрение соленых морских вод. Аналогичные примеры можно привести и по другим странам.

Объективности ради следует сказать, что водоотбор из подземных резервуаров не всегда приносит вред. Вспомним хотя бы осушение переувлажненных земель Колхиды: тут некогда кишащая комарами болотистая территория была превращена буквально в цветущий сад. К сожалению, больше приходится иметь дело с негативными последствиями.

Истощение ресурсов подземных вод прямо или косвенно сказывается на других компонентах подземной гидросферы и окружающей природной среды в целом. Ведь в природе все взаимосвязано. Понижение уровня грунтовых вод сразу же вызывает сокращение запасов почвенной влаги и иссушение сельскохозяйственных угодий, часто сопровождается гибелью лесов, снижением водности рек и наступлением пустынь. Обезвоживание сказывается не только на водоносных, но и на водоупорных породах, которые лишаются связанной воды. В свою очередь происходящее при этом уплотнение ранее обводненных толщ вызывает опускание территории и даже провалы. В других случаях чрезмерный водоотбор вызывает засоление эксплуатируемых водоносных горизонтов за счет подтока в образовавшийся «вакуум» морских или глубоких соленых вод; в создавшиеся воронки депрессии иногда проникают промышленные или коммунально-бытовые стоки.

Профессора Н. И. Плотников и А. А. Карцев различные техногенные процессы, воздействующие на подземную гидросферу, объединили в три типа: 1) вызывающие привнос вещества, в основном водных растворов, 2) связанные с изъятием вещества — жидкого, твердого и газообразного, 3) сложные техногенные процессы, сочетающие привнос и изъятие вещества.

Привнос вещества происходит не только при загрязнении подземных вод, часто оно вовсе его не вызывает, например при мелиорации земель, фильтрации из каналов или искусственном пополнении запасов подземных вод. Тогда имеют место заболачивание территории, заводнение нефтегазовых залежей и т. д.

Изъятие вещества характерно как при различного рода водоотборе, так и при разработке полезных ископаемых, сопровождающихся извлечением водных растворов. Этот тип процессов, помимо истощения ресурсов подземной гидросферы, вызывает провалы и просадки территории, засолонение и опреснение подземных вод, межпластовые перетоки.

Сложные техногенные процессы имеют смешанный или промежуточный характер, сочетая обводнение и осушение. Типичными могут считаться техногенные процессы, наблюдаемые в городах, где отбор подземных вод сопровождается утечками из водопроводов и фильтрацией сточных вод.

Возвратимся теперь к тому, с чего начали. Угроза подземной гидросфере действительно существует. Более того, в будущем она, вероятно, возрастет, поскольку человечество будет еще больше вырабатывать отходов и увеличится водоотбор из земных недр. Есть все основания предполагать, что техногенная нагрузка из локальной станет региональной.

Как же быть? Есть ли эффективные способы борьбы с загрязнением и истощением ресурсов подземной гидросферы? Да, есть. Если говорить коротко, то они состоят в выработке жестких защитных мероприятий.

В СССР принцип рационального природопользования заключается в органическом сочетании его с охраной. В части, касающейся подземной гидросферы, эти мероприятия регламентируются «Основами водного законодательства Союза ССР и союзных республик» и «Основами законодательства Союза ССР и союзных республик о недрах».

Стратегия охраны подземной гидросферы. Можно сетовать и возмущаться в связи с ухудшающимся состоянием подземной гидросферы. Важнее понять наши ошибки, осмыслить их и по возможности не повторять впредь.

Главное заключается в том, чтобы изменилось отношение общества к природе. В Конституции СССР, принятой в 1977 году, этому новому отношению специально посвящена статья 67: «Граждане СССР обязаны беречь природу, охранять ее богатства».

Организация Объединенных Наций в 1980 году провозгласила «Всемирную стратегию охраны природы», в разработке которой принимали участие многие международные и национальные организации. В ней переосмыслен весь процесс антропогенного воздействия на окружающую среду и ставится задача перестройки этого воздействия. Основные задачи сводятся к поиску новых форм взаимоотношения человека и природы, выявления экологически наиболее эффективных путей и мер ее охраны в условиях постоянно растущей техногенной нагрузки.

Всемирная стратегия охраны природы провозглашается как система рациональных методов управления производственной деятельностью человека при освоении природных ресурсов. К числу ее важнейших задач относятся: разработка системы экономических критериев оценки природных ресурсов, всесторонняя оценка оптимальной их эксплуатации и, пожалуй главное, — исключение необратимых изменений окружающей природной среды.

Профилактика вредных воздействий и прогноз вызываемых ими последствий — таково основное направление в борьбе с загрязнением и истощением ресурсов подземной гидросферы.

Всякое нежелательное явление легче, а чаще всего и дешевле предупредить, чем ликвидировать. Загрязнение и истощение подземных вод в сущности есть итог пренебрежительного отношения к элементарным охранным мероприятиям. Пускай вынужденного или даже в какой-то степени оправданного. Чтобы охранные мероприятия стали действенными, следует решительно пресечь хищническое использование подземных вод и бесхозяйственное отношение к ним.

Усиливающееся воздействие человека на подземную гидросферу быстро приводит к необратимым изменениям. Отсюда следует, что медлить с профилактикой нельзя. Значение ее видно уже из консервативности и устойчивости загрязнения подземных вод по сравнению с поверхностными водами. Все это и выдвигает профилактику в качестве главного пункта охраны.

Особенно важна профилактика при охране подземных вод в районах развития многолетнемерзлых пород. Как известно, природная среда здесь особенно ранима. Во избежание негативных последствий нельзя допускать нарушения веками сложившегося воднотермического режима. Задача заключается в том, чтобы не нарушать слой мерзлоты: ведь даже след тракторных гусениц (к сожалению, таковые «прочерчиваются» на новостройках во множестве — где надо и где не надо) — это неизлечимая «рана», которая со временем ведет к необратимым изменениям. Опыт возведения крупных строительных объектов в северных районах (Западно-Сибирский топливно-энергетический комплекс, БАМ и т. д.) показывает, что сохранение естественной гидрогеологической обстановки в системе вода — порода является непременным условием при проведении строительства.

Известный ученый и видный специалист по гидрогеологии аридной зоны Владимир Николаевич Кунин, возглавлявший Институт водных проблем АН СССР, в последние годы жизни занимался проблемами рационального использования и охраны водных ресурсов в условиях все возрастающего техногенного воздействия. Касаясь стратегии профилактических мероприятий на перспективу, он указал на единственное радикальное решение проблемы — создание безотходных производств. Ведь очистные сооружения, как бы совершенны они ни были, всей проблемы решить не могут. Речь должна идти о единой системе охраны и наземных, и подземных вод.

Уже сейчас в некоторых странах на профилактику расходуются огромные деньги. При безотходной технологии полная утилизация промышленных стоков порой требует ассигнований, составляющих до 25 % стоимости продукции. Иначе говоря, профилактика нуждается в средствах, причем значительных. Это как раз та статья расходов, за счет которой не следует экономить. Иногда требуемые для ликвидации загрязнения воды затраты сравнивают со стоимостью расходов по реализации космической программы. Пренебрежение мероприятиями по охране подземных вод в некоторых капиталистических странах уже вызвало катастрофические последствия. Ни одно государство не располагает средствами, чтобы приостановить загрязнение и истощение подземных вод сразу. В СССР и в других социалистических странах на эти цели выделяются специальные ассигнования, которые предусмотрены в перспективных планах развития народного хозяйства и охраны окружающей среды.

Защитные мероприятия начинаются с учета всего того, что грозит или может угрожать подземной гидросфере. Сами мероприятия весьма разнообразны — от выработки безотходной технологии и снижения водоотбора из земных недр до искусственного восполнения подземных вод. Надо твердо знать целевое назначение мер: не допускать загрязнения (выше предельно допустимых концентраций — ПДК) и истощения подземных вод. Иначе негативные последствия начнут сказываться на других элементах окружающей среды — реках, лесах и т. д. Для предотвращения загрязнения и истощения требуется, кроме значительных затрат, бережное и хозяйское отношение к использованию подземных вод. Во многих случаях вред, наносимый подземным водам, вызван иждивенческим или, что мы наблюдаем при частнокапиталистическом способе производства, хищническим отношением к ним.

Вмешательство в жизнь подземной гидросферы должно опираться на знание гидрогеологических закономерностей, в первую очередь процессов водообмена, тепло- и массопереноса. Чтобы уменьшить или вовсе исключить нежелательные последствия, требуется точный прогноз воздействия деятельности человека на подземную гидро-сферу.

На состоявшейся в 1982 году Всесоюзной гидрогеологической конференции специально обсуждалась проблема гидрогеологического прогнозирования. Под гидрогеологическим прогнозом понимается научно обоснованное предсказание тенденции и интенсивности изменения (качественное и количественное) параметров подземной гидросферы как в естественных условиях, так и в условиях усиливающегося антропогенного влияния. В сущности такое предвидение — сложная научно-практическая проблема.

Хочется подчеркнуть необходимость получения количественных параметров. Пора уже отказаться от изучения лишь направленности изменений и их качественной оценки по принципу «много — мало» или «достаточно — недостаточно». Необходим количественный анализ. Количественное прогнозирование техногенного воздействия на подземную гидросферу должно опираться на знание естественных гидрогеологических процессов и закономерностей, изменяющихся под влиянием приобретающей глобальный характер производственной деятельности человека.

Научное предвидение — не самоцель. Его задача состоит в разработке методов регулирования процессов загрязнения и истощения подземных вод. Проблема эта новая и трудная, предстоит поиск оптимального взаимоотношения подземной гидросферы с оказываемыми на нее техногенными нагрузками. Будучи составной частью мероприятий по управлению режимом подземной гидросферы, эти методы не должны оказывать отрицательного влияния на другие элементы окружающей среды и экосистему в целом.

Нетерпимое отношение к нарушителям охранных законов — вот чего еще нам не хватает.

«Мы караем за хулиганство, за убийство людей, но порой равнодушны к убийству природы», — писал К. Паустовский, и эти его слова во многом верны. Чтобы защитные мероприятия были эффективными, необходимо изменить психологический климат вокруг тех, кто загрязняет или истощает природные ресурс^!. Порой благодушие и попустительское отношение к профилактике губит дельные рекомендации, ведет к нарушению природной обстановки. А подземные воды требуют особенно бережного отношения и самой жесткой профилактики: их не видно, как поверхностные воды, и наносимый урон ощущается большей частью тогда, когда загрязнение или истощение становятся критическими.

В Советском Союзе многое делается для охраны водных ресурсов, однако при огромном размахе производства требуются повседневно и повсеместно более эффективные действия. Ассигнования на природоохранные мероприятия растут с каждым годом. Тем не менее, как отмечалось на XXVI съезде КПСС, еще есть недостатки, среди них отставания с вводом в строй водоочистных сооружений и порочная практика их строительства после пуска в эксплуатацию предприятий, уже сбрасывающих промстоки.

Управление режимом подземной гидросферы. Чтобы регулировать качественное состояние и ресурсы подземных вод, надо управлять режимом не только последних, по и других разновидностей влаги в недрах Земли. Ведь эксплуатация, например, оросительных систем или водозаборных сооружений нарушает естественный режим как подземных вод, так и других компонентов подземной гидросферы.

Уже на заре цивилизации человек не только влиял на режим подземной гидросферы: он пытался так или иначе регулировать ее качественное состояние и ресурсы. Скажем, с помощью мелиорации ставилась цель управлять влажностью почвы. В наше время, когда антропогенное влияние распространяется из верхних горизонтов на глубину в несколько километров, естественный режим подземных вод постепенно сменяется на нарушенный. Количественно и качественно меняются также другие компоненты подземной гидросферы (ресурсы связанной влаги, гидрогеохимическая обстановка и т. д.). В перспективе переход естественного режима в нарушенный будет распространяться вширь и вглубь.

И тут вырисовывается важная и сложная проблема регулирования качественного состояния и ресурсов подземной гидросферы. Она заключается в направленном воздействии на различные ее компоненты с тем, чтобы управлять их режимом в нужном человеку направлении. Реально ли это? Оказывается, реально, хотя и сложно. Здесь еще много неясного. Правда, первые шаги на этом пути человек сделал много столетий назад, когда научился регулировать водно-солевой режим почв. В последние годы задачи становятся все труднее. Тем не менее и тут имеются известные успехи. Взять хотя бы изменение качества и ресурсов подземных вод в результате их искусственного восполнения. Удачными оказались, например, и попытки управления равновесиями вода — пар и вода — лед в подземной гидросфере. Вспомним еще о «вызванных» землетрясениях, спровоцированных заполнением водохранилищ или закачкой воды в глубокие горизонты, а также о вмешательстве в процесс наледеобразования. Все указывает на принципиальную возможность управления качеством и состоянием как верхних, так и глубоких водоносных горизонтов, воздействия на режим внутриземной воды в различных фазах и состояниях.

Следовательно, речь идет о регулировании естественного и нарушенного экологического равновесия в целях создания необходимой для жизнедеятельности человеческого общества окружающей природной среды. Это вовсе не означает, что надо прекратить любое воздействие на подземную гидросферу. Наоборот, следует обеспечить ход изменений ее режима в желательном для человека направлении, при котором составляющие элементы режима не нарушат гармонии окружающей природной среды и полностью исключат кризисные ситуации. Регулирование качественного состояния и ресурсов подземной гидросферы требует высокого уровня знаний гидрогеологических закономерностей и процессов. Тут требуется максимально точный прогноз, опирающийся на прочные знания. Как никогда следует руководствоваться пословицей: «Семь раз отмерь, один раз отрежь». Это тем более необходимо, что наша информация о жизни подземной гидросферы далеко не совершенна. Да, многое о гидрогеологических процессах еще не известно. Именно ограниченность наших знаний заставляет весьма настороженно относиться к техногенным «перегрузкам» подземной гидросферы, поскольку производственная деятельность человека порой вызывает неожиданные (с позиции выданного прогноза) последствия…

Примеры ошибочного прогноза, к сожалению, встречаются. Перед глазами одно из озер Кавказа с оголенными берегами, приостановить снижение уровня которого — из-за, казалось бы, небольшой неточности в определении величины подземного стока в озеро — не смогли без переброса воды через хребет по туннелю. Или прорыв горячих вод в выработки Северо-Муйского тоннеля. Авария вызвала приостановку на два года горнопроходческих работ. Прогрессирующее засоление почв при мелиорации — тоже следствие неоправдавшегося прогноза. Перечисленные примеры указывают на настоятельную необходимость лучшего знания гидрогеологических закономерностей и более вдумчивого отношения к любым воздействиям на подземную гидросферу.

Управление режимом подземной гидросферы должно органично сочетаться с другими мероприятиями по освоению природы, с общим воздействием на всю среду обитания человека. Чтобы техногенная нагрузка вызывала как можно меньше негативных последствий, разработка методов управления загрязнением и истощением подземных вод нуждается в комплексном регулировании антропогенных изменений — мониторинге. Мониторинг как государственный регулятор изменения состояния подземной гидросферы включает системы «наблюдения», «оценки» и «прогнозы». С их помощью выявляются источники и причины воздействия, а также наиболее опасные ситуации. Мониторинг уже начинает внедряться. Вероятно, широкая наблюдательная сеть и мониторинг в будущем станут основой для управления процессами загрязнения и истощения ресурсов подземной гидросферы.

Однако высокий уровень знания о гидрогеологических закономерностях и процессах, широкая сеть наблюдательных пунктов и внедрение мониторинга — всего этого еще недостаточно для управления режимом подземной гидросферы. Требуются еще, по крайней мере, два условия: во-первых, совершенные технические устройства и, во-вторых, принципиально иное отношение общества к природоохранным мероприятиям.

Научно-техническая революция, неимоверно обострив противоречия между человеческим обществом и природой, в то же время создала возможности для разрешения этих противоречий. Ведь только современная техническая база позволяет внедрить безотходную технологию или способы утилизации промстоков, при которых переработка отходов оказывается экономически рентабельной. Разумеется, речь идет о совершенных технических устройствах, мощных научно-производственных объединениях и даже специальных отраслях промышленности, которые требуют крупных капиталовложений.

Человечество, кажется, осознало, что природа — не только источник ресурсов. Пора относиться к ней как к партнеру и ориентироваться на экологическую гармонию природы и человека. Лишь при таком подходе станет возможным управление режимом подземной гидросферы и осуществление действенных природоохранных мероприятий.

Человек и природа… Все время люди только пользовались благами природы, порой силой вымогая ее «милости» и ничего не давая взамен. Как тут не вспомнить слова великого поэта и естествоиспытателя И. В. Гете: «Природа всегда правдива, всегда серьезна, всегда строга, всегда права — ошибки же и заблуждения исходят от людей». Человек должен стать природе другом, способным помочь ей преодолеть техногенные нагрузки. В применении к подземной гидросфере это означает не только рациональное использование, но и бережное сохранение заключенных в ней водных ресурсов, столь необходимых человеческому обществу в будущем.

…В день и час весеннего равноденствия каждый год перед зданием ООН в Нью-Йорке трижды звонит колокол. Так отмечается ставший уже традиционным День Земли. В 1981 году он проходил под девизом «Вода: наше бесценное достояние». В этот год началось десятилетие (1981–1990 годы) чистой воды, которое провозгласила Генеральная Ассамблея ООН. Цель десятилетия — привлечь внимание общественности к проблеме обеспечения людей чистой питьевой водой и улучшить санитарное состояние водных ресурсов Земли.

ПРОФЕССИЯ — ГИДРОГЕОЛОГ

Mente et malleo («Разумом и молотком»)

Девиз геологов

Естествоиспытатель… подобен человеку, который карабкается на гору с одной скалы на другую, и хотя он может и не достигнуть вершины, но с каждым шагом поднимается выше и кругозор его все более расширяется.

Э. Зюсс
Кто он, гидрогеолог? Исследователь подземной гидросферы прежде всего геолог. Он изучает геологию воды, как, например, «обычный» геолог ведет поиски или разведку месторождений металлов, солей, нерудного сырья. Ему приходится постоянно быть в экспедициях, жить в палатках или на буровых. Романтики в его профессии хватает!

Расхожее представление о геологе: случай помог ему совершить открытие. Иногда так бывает. Только иногда. Но как много надо работать, чтобы не упустить этот случай, чтобы многолетние и дорогостоящие исследования больших коллективов увенчались успехом! Какой нужен упорный повседневный труд! На сей счет хорошо сказано в песне:

Не просто себе бродяги, таежные
чудаки,
Геологи — работяги, копатели, ходоки.
В профессии геолога, как, пожалуй, нигде, удачно сочетаются не только романтика и тяжелый труд, но и наука и практика. Прежде чем открыть месторождение полезного ископаемого, его сначала предсказывают. Статистика свидетельствует, что в СССР подавляющее число месторождений пресных и минеральных подземных вод предсказано гидрогеологами в кабинетах, а собственно поиск затем был подчинен той или иной научной концепции. Порой такие прогнозы являются взаимоисключающими, и тогда поиск ведется в нескольких направлениях. А ведь каждое мнение основано на фактах, приводящих его авторов к определенным рекомендациям. Отмахнуться от последних нельзя — их приходится проверять. В сущности, открытие представляет собой подтверждение гипотезы, которая к нему привела и позволила его вычислить.

Летом 1984 года в Москве состоялся XXVII Международный геологический конгресс. В числе 20 секций 142 на нем функционировала и гидрогеологическая. Подобные конгрессы собираются в течение последнего столетия на разных континентах регулярно с периодичностью один раз в четыре года.

Международный геологический конгресс вспомнился из-за его эмблемы. На ней под скрещенными молотками по латыни начертаны слова: «Разумом и молотком». Как видите, читатель, на первом месте у геолога — умственный труд. Молоток — главное его орудие — стоит на втором месте. Геолога обычно изображают с ним; в какой-то мере молоток или скрещенные молотки для него символичны.

По старому поверию немецких горняков,
Ты должен твердо верить в свой добрый
молоток,
Терять ты можешь деньги, богатство и цветы,
Но молоток свой верный терять не должен ты.
Эти строки принадлежат одному выдающемуся советскому геологу, ими он напутствовал молодых геологов, которым прививал любовь к их главному орудию труда. Объективности ради следует напомнить, что под геологическим молотком сейчас понимают самые различные орудия, способы и методы геологических исследований, об использовании которых в гидрогеологии речь впереди.

Разумом и молотком! А где же романтика? Она везде, она неотъемлемый атрибут жизни любого геолога, в том числе и гидрогеолога. Все зависит от восприятия геологической деятельности: одни (к их числу относится преимущественно молодежь) увлечены романтикой, другие — самим процессом поиска.

Романтика имеет и оборотную сторону: постоянные разъезды, трудные маршруты в безводных степях или заболоченной тайге, ожидания в аэропортах из-за частой непогоды… Проникновенно о «туманах и дождях», «неизведанных путях» и необходимости «выучиться ждать» пела популярная польская певица Анна Герман в песне «Надежда». Мне кажется, что она так удачно исполнила эту песню в первую очередь потому, что сама по специальности была геологом.

…В минералогическом музее Иркутского политехнического института среди водных минералов лежат две каменные роэы. Одну, бурого цвета, создала природа в карловарской воде: туда опускают натуральную розу, и через две недели она покрывается арагонитом; ее привез музею лечившийся в Карловых Варах местный профессор-гидрогеолог. Другая — изумительная друза бледно-розового цвета, от нее трудно оторвать глаза; это — дар Анны Герман, получившей ее где-то во время гастролей в память о ее геологической специальности. Обе каменные розы — гордость музея.

Об открытиях гидрогеологов часто пишут в периодической печати. Открытия весьма разнообразны, большей частью это месторождения пресных или минеральных подземных вод; однако встречаются открытия принципиального значения, например новые методы поиска подземных вод, неизвестные свойства подземной гидросферы или способы прогноза землетрясений по изменению гидрогеохимического и гидрогеодинамического режима. Появляются в журналах рассказы и повести, есть пара романов, героями которых стали гидрогеологи, а в драматическом театре Петропавловска-Камчатского даже поставили о них спектакль.

В 1981 году большой группе гидрогеологов была присуждена Государственная премия СССР «…За разработку теоретических основ и методики разведки пресных подземных вод и их внедрение, обеспечившие эффективное решение проблемы водоснабжения крупных городов и промышленных центров СССР». В числе лауреатов — крупные специалисты-производственники и ученые, известные всей стране: А. Т. Бобрышев, Б. В. Боревский, А. К. Джакелов, Г. В. Куликов, Н. А. Плотников, Н. И. Плотников, Н. Н. Ходжибаев, Л. С. Язвин и другие.

Хотя в гидрогеологии используются общегеологические методы исследований, работа гидрогеолога специфична и временами отличается от работы «обычного» геолога. Она сложнее и многограннее, поскольку гидрогеолог имеет дело с весьма динамичным объектом — меняется его фазовое состояние, да и сам он все время в движении. Этот объект, кстати, не всегда представляет собой полезное ископаемое, часто с ним приходится бороться, вести за ним систематические наблюдения.

Специализация гидрогеолога. Нелегкой профессии исследователя воды земных недр посвятил небольшую книжицу Р. К. Баландин. Брошюра издана в 1979 году издательством «Знание» под названием «Дарующая жизнь». Так автор называет подземную воду, а ее исследователей — «лоцманами подземных океанов». «У гидрогеологии, — пишет он, — имеется одно очень редкое качество: она, можно сказать, универсальна; способна удовлетворить людей с совершенно разными вкусами и талантами».

Р. К. Баландин — ныне писатель-популяризатор, а в прошлом гидрогеолог — насчитывает в гидрогеологии 20 специальностей: гидрогеолог-съемщик, гидрогеолог-разведчик, гидрогеохимик, гидрогеофизик, гидрогеотермик и так далее. Можно продолжить этот перечень — некоторые специальности им не названы.

Вот несколько картин из жизни гидрогеологов.

Картина первая. На берегу таежной речки расположился лагерь из полутора десятков разнокалиберных палаток. Закат высвечивает багрянец тайги. Осень. Благодатное время для маршрутов: глаза не застилает пот, ночные заморозки прибили комаров, а трава пожухла и почти не мешает ходьбе. Вечер. Наступает время, когда маршрутчики возвращаются в лагерь: одни — пешком, другие — верхом, третьи — на автомашинах. Кто они? Это скорее всего гидрогеологи-съемщики, исхаживающие территорию и регистрирующие проявления подземных вод; их задача — составление гидрогеологической карты. Это могут быть и гидрогеологи-поисковики, которые при помощи гидрогеохимического опробования ищут рудо- или нефтегазопроявления. Так же ведется начальное изучение гидрогеологических условий для целей, скажем, шахтного или гидротехнического строительства.

Картина вторая. Только что мы говорили о том, что гидрогеологи ведут площадное исхаживание территории. Однако нередко приходится искать или обследовать гидрогеологические объекты вроде минеральных источников или наледей в очень труднодоступных и удаленных районах. Что называется, идти по азимуту к предначертанной цели! Хотя гидрогеолог в наше время чаще всего пользуется современными видами транспорта, вертолетами и даже вездеходами, цель не всегда достигается. Иногда вертолета в нужное время просто нет или из-за погодных условий его не выпускают. И тогда остается традиционный транспорт — верхом, на лодке, пешком… Такие маршруты продолжаются по нескольку дней. Они наиболее романтичны.

Не знаю — к сожалению или к счастью, — но белых пятен на гидрогеологической карте почти не осталось. Тем не менее открытия продолжаются, правда, не такие, как, скажем, знаменитая Долина Гейзеров на Камчатке, которую в 1941 году обнаружила Т. И. Устинова. Большей частью это ранее неизвестные термальные или соленые источники, крупные выходы пресных подземных вод. Бывают и более примечательные открытия. Так, в северной части Читинской области, где теперь проходит БАМ, член-корреспондент АН СССР В. П. Солоненко несколько лет назад описал новый гидроминеральный район, а О. Н. Толстихин — тогда якутский гидрогеолог — в бассейнах рек Индигирки и Колымы обнаружил громадные поля наледей. Кто ищет, тот всегда найдет!

Картина третья. В некотором удалении одна от другой стоят буровые вышки. Идет бурение, а там, где оно завершено, из скважины производится откачка воды. Одновременно идут горные работы, проводятся геофизическая разведка, гидрогеохимическое опробование, изучение взаимосвязи подземных и поверхностных вод. Так осуществляется оценка месторождения подземных вод. Объем и методы поисково-разведочных работ зависят от стадии исследований, геологического строения и размера месторождения. Иногда это делается быстро — за считанные дни, но для обеспечения подземной водой крупного города поисково-разведочные работы затягиваются на годы. Когда подземные воды находятся на небольшой глубине, что свойственно месторождениям пресных вод, то ограничиваются бурением скважин глубиной до 30–50 метров. Глубокое бурение (до 3000 метров) необходимо при оценке месторождений промышленных и термоэнергетических вод.

…Кажется, не счесть городов и населенных пунктов, которые используют питьевую воду из подземных резервуаров. Некоторые получают ее давно. Столетие назад на снабжение подземными водами был переведен один из крупнейших городов тогдашней Европы — Вена. Гидрогеологическими исследованиями, легшими в основу этого проекта, завершившегося каптажом высокодебитных источников в Альпах и транспортировкой их воды к жаждущему городу, руководил знаменитый геолог Э. Зюсс. Благодарные венцы поставили ему великолепный памятник.

Выводят подземную воду также на орошаемые массивы: такая вода превращает в цветущие сады ранее бесплодные степи и пустыни. В очень больших количествах ее используют на курортах. А вот Петропавловск-Камчатский получит в самое ближайшее время из подземных резервуаров тепло: в 70 километрах от города гидрогеологами разведано Мутновское месторождение пароводяной смеси. Геотермальная станция, построенная на его базе, в следующей пятилетке станет крупнейшей в Советском Союзе. Упомянутая выше пьеса, которая идет на сцене драматического театра Петропавловска-Камчатского, как раз и рассказывает о жизни гидрогеологов, открывших и изучавших Мутновское месторождение. Называемся она «Тепло Земли». Примечательное название!

Картина четвертая. Опять сеть скважин, из которых беспрерывно ведется водоотлив. На сей раз скважины расположены по периферии осушаемых строительных объектов — шахтных стволов, карьеров, котлованов, тоннелей. Осушение, достигаемое с помощью водопонизительных скважин, облегчает и удешевляет строительство, а порой без него проходка горных выработок просто невозможна.

Картина пятая, шестая…

Какими же «молотками» пользуются гидрогеологи? У них на вооружении многие современные методы исследований. Сюда относятся широкое применение космо- и аэрофотоснимков (скажем, для выявления очагов разгрузки подземных вод на дне морей), математическое и термодинамическое моделирование гидрогеологических процессов, точный лабораторный эксперимент, основанный на последних достижениях физики и химии (атомная абсорбция, активационный и спектральный анализы, масс-спектрометрия, хроматография и так далее). Еще более разнообразны технические средства — от новейших буровых установок и откаченных агрегатов до миникомпьютеров и автоматических регистраторов режима подземных вод. Вот во что превратился у гидрогеолога традиционный геологический молоток!

Когда я в начале 50-х годов молодым специалистом приступил к изучению подземных вод, о перечисленных способах и технических средствах мы даже не мечтали. Сейчас же мои дочери — а они обе связали судьбу с гидрогеологией — без них не представляют своей работы: для одной ЭВМ систематизирует результаты гидрогеохимических поисков и рисует по ним карты, другая работает в лаборатории анализа воды, оснащенной современными приборами для быстрого и точного определения более ста растворенных компонентов, при этом для анализа достаточно небольшого количества воды, буквально капли.

Гидрогеологические работы сейчас обслуживают люди самых разнообразных специальностей. Среди них можно встретить буровиков и механиков, математиков и кибернетиков, физиков и химиков, биологов и санитарных врачей… Работу в гидрогеологии по душе могут найти и любители романтики, готовые уехать в тайгу или горы, и те, кому нравится лабораторный эксперимент со сложной аппаратурой, и, наконец, люди аналитического ума, способные систематизировать факты и на их основе выводить закономерности. О последних следует рассказать подробнее.

Гидрогеолог-исследователь. Всякое гидрогеологическое исследование начинается с составления проекта работ. Проектирование — весьма ответственный этап, именно в это время определяются концепция поиска, объемы съемочных или методика разведочных работ и подсчитывается их стоимость. Затем наступает так называемый полевой период, во время которого собственно и выполняются запроектированные виды исследований — съемка, бурение, опытные работы или режимные наблюдения. Одновременно проводятся лабораторные определения и эксперименты. После завершения полевых и лабораторных работ наступает самый ответственный этап, когда систематизируется полученный фактический материал и по результатам исследований составляется отчет.

Время, в течение которого ведутся проектирование и составление отчета, у геологов называется камеральным периодом. Это период творчества, рождения и обсуждения идей, обоснования гидрогеологических закономерностей и прогнозов. Участвующие в нем гидрогеологи представляют своего рода научно-исследовательскую группу.

Гидрогеолога-исследователя можно встретить в небольшой партии и в крупной экспедиции, в отраслевом и академическом институтах, на кафедре вуза. Независимо от того, где он работает, такой исследователь обязан видеть, что называемся, насквозь подземную гидросферу, ибо иначе нельзя грамотно вести изучение подземных вод или разрабатывать действенные рекомендации по борьбе с их вредным влиянием на строительство.

В одной северной экспедиции группа гидрогеологов предложила эффективный метод поиска месторождений подземных вод в толще глубокопромороженных пород. Оказывается, хороший индикатор таких месторождений — наледи. Вокруг них с помощью геофизических методов оконтуривают площади таликов, на которых затем проводится бурение. А в совершенно иной климатической зоне — среди пустынь Туркмении — гидрогеологи с применением сходных методов поиска научились обнаруживать под раскаленными песками крупные линзы пресных подземных вод. Эти открытия интересны сами по себе, но главное — они вдохнули жизнь в считавшиеся ранее бесперспективными для освоения территории.

Весьма разнообразен труд исследователей подземной гидросферы в отраслевых и академических институтах. Штабом гидрогеологической науки может быть назван Всесоюзный институт гидрогеологии и инженерной геологии Министерства геологии СССР. Он находится в Подмосковье. Его сотрудники разрабатывают методику проведения различных видов гидрогеологических исследований. Большая часть ранее названных лауреатов Государственной премии 1981 года — представители этого института. Есть НИИ с относительно узким профилем исследований, где работают, например, специалисты по минеральным лечебным водам, гидрогеологи-мерзлотоведы, гидрогеологи-нефтяники и т. д.

В Советском Союзе подготовка гидрогеологов ведется более чем на 30 кафедрах вузов, а также в нескольких техникумах. Почти при каждой кафедре существует научно-исследовательский сектор. Подчас там ведутся оригинальные исследования. Так, теория гидрогеологического моделирования успешно разрабатывается в Московском геологоразведочном институте под руководством профессора И. К. Гавич, а в Томском политехническом институте профессор П. А. Удодов и его ученики создали школу гидрогеохимиков, получившую мировое признание. Крупные научные достижения получены на кафедрах гидрогеологии Московского государственного университета и Ленинградского горного института.

За рубежом масштабы подготовки гидрогеологов и гидрогеологических исследований более скромные. Например, в ГДР имеется только одна кафедра гидрогеологии. Она находится при Фрейбергской горной академии. Возглавляет ее профессор П. Иордан — известный специалист в области изотопной гидрогеологии. Определенные успехи в изучении подземных вод имеют гидрогеологи США, Франции, Чехословакии, Польши, Канады, Австрии. В США издается единственный в своем роде гидрогеологический журнал с названием «Гидрология подземных вод».

ВЗГЛЯД В БУДУЩЕЕ  (вместо послесловия)

Подведем итоги. Представление о подземной гидросфере, которым автор поделился с читателем, конечно, не является полным и всесторонним. Во многом — это видение внутриземных вод через призму собственного восприятия. Важные проблемы затронуты в самом общем виде, а о некоторых и не говорилось. Но главное, думается, достигнуто — показана жизнь подземной гидросферы.

Мир подземной гидросферы постепенно раскрывается перед исследователем… Его познание дается нелегко, суть бывает скрыта под наслоением догадок и временных разочарований, но упорный труд неизбежно одаривает в конце концов открытиями. Порой удивительными. Такое, вероятно, хорошо знают и поэты, иначе бы А. Блок не написал:

Сотри случайные черты,
И ты увидишь: мир прекрасен.
Представление о подземной гидросфере отражает основные законы материалистической диалектики. Авторы шеститомной монографии «Основы гидрогеологии» следующим образом сформулировали движущие силы, формы и пути развития подземной гидросферы.

Во-первых, входящие в подземную гидросферу компоненты едины, но это единство полно противоречий. Вода здесь находится в различных фазах и состояниях, имеет разную минерализацию, температуру и т. д. Уже в этом видна противоречивость, хотя все разновидности Н2О связаны между собой. Будучи материальным образованием, подземная гидросфера отличается взаимодействием противоположно направленных тенденций, которые интегрируются в основном противоречии — противоборстве поверхностного и глубинного начал. Взаимодействие экзогенных и эндогенных факторов, таким образом, определяет устойчивость и изменчивость подземной гидросферы. В ходе геологического времени единство и борьба этих противоположностей как раз и составляют основу ее внутреннего развития, источник движения.

Во-вторых, составные компоненты подземной гидросферы подвержены изменениям как незначительным, количественным, так и коренным, качественным. Встречаются изменения только количественные (уменьшение скорости движения подземных вод с глубиной, увеличение их минерализации в этом же направлении и т. д.), но в целом для подземной гидросферы характерны скачкообразные переходы количественных изменений в качественные. Формы таких переходов многообразны, они бывают резкими (переход воды из жидкой фазы в твердую или газообразную) или постепенными (высвобождение химически связанной воды из минералов), нередко растягиваются на длительное геологическое время (изменение ионно-солевого или газового состава воды). Многообразие форм перехода количественных изменений в качественные отражает характер и пути развития подземной гидросферы.

В-третьих, развитие подземной гидросферы циклично. Цикличность процессов выражается в водообмене с наземной гидросферой, замещении магматогенных и седиментогенных вод инфильтрогенными, переходе воды из одной фазы или состояния в другое и обратно. Каждый следующий цикл или круговорот отрицает предыдущий, хотя и сохраняет известную преемственность. Это качественно новая и более высокая ступень развития, отвечающая закону отрицания отрицания. Цикличный ипоступательный характер гидрогеологических процессов отражает историческую преемственность в развитии подземной гидросферы.

Достигнутый уровень теоретических исследований позволил осуществить серьезный скачок в состоянии гидрогеологии как науки. Он выразился в том, что период господства описательного элемента, то есть описания явлений и сбора фактов, сменился стадией, когда в науке наряду с накоплением информации начинает преобладать стремление вскрыть причины процессов и познать их закономерности. Без теоретического осмысления достигнутого нельзя представить движения вперед и обеспечить выполнение усложняющихся задач практики.

В будущем значение теории в гидрогеологии, с одной стороны, возрастет, с другой — качественно изменится, что, без сомнения, приведет к принципиально новым научным обобщениям. Такой вывод основан на следующем.

1. Изучение подземных вод и других внутриземных разновидностей воды распространяется вширь (с охватом в конечном итоге всего земного шара — как континентов, так и океанов) и вглубь (в отдельных случаях уже достигнуты глубины 8–10 километров). Естественно, получаемый при этом уникальный материал (скажем, о подземных водах океанических рифтов или сверхглубоких скважин) позволит сформулировать новые гидрогеологические закономерности и выдвинуть новые идеи в области гидрогеологии.

2. Совершенствование методики гидрогеологических исследований, использование методов точных наук и приемов смежных дисциплин ведет к тому, что оценка роли воды в геологических процессах и водообмена в земных недрах все больше и больше опирается на количественные параметры. Последние, однако, вряд ли охарактеризуют в полной мере геологические процессы, но судить о масштабах и направленности их по таким показателям будет возможно. Следовательно, появятся и количественные критерии для суждения о геологической деятельности воды. Начало этому уже положено: примером может служить применение в гидрогеологии термодинамического анализа и изотопных определений. Конечно, эти методы не дают однозначного цифрового ответа на все поставленные перед ними вопросы. Однако отдельные гидрогеологические задачи, которые нельзя изучать традиционными методами, с их помощью успешно решают, получая ответ в цифрах.

Количественная оценка геологической роли воды дает возможность с иных, чем раньше, позиций познать гидрогеологические закономерности, охарактеризовать процессы числом и мерой.

3. Как бы совершенны ни были количественные оценки, характеризующие те или иные геологические процессы, последние нельзя вложить в «прокрустово ложе» цифр и формул. Объект гидрогеологии — «продукт» сложной геологической истории, испытывающий влияние множества факторов, процессов и обстановок, которые невозможно учесть ни сейчас, ни, пожалуй, в будущем. Поэтому его познание должно базироваться на историко-генетическом подходе. Плодотворность исторического направления, получившего название палеогидрогеологического метода, доказана. Если же историческое направление объединить с генетическим, которое уже начинает себя проявлять в виде учения о происхождении и эволюции воды земных недр, то есть генетической гидрогеологий, привлечь новую уникальную информацию и количественную оценку геологической роли воды, то значение такого подхода для гидрогеологической теории трудно переоценить. Именно он позволит изучить роль воды в геологических процессах на базе современных геологических концепций, геохимических и геофизических данных, иными словами, с совершенно новых позиций охарактеризовать ее деятельность на различных термодинамических уровнях. В сущности, тут следует ожидать крупные открытия и важные закономерности, касающиеся фундаментальных начал гидрогеологии.

Перечисленными задачами и проблемами, естественно, далеко не исчерпываются пути развития гидрогеологии. Потенциальные возможности ее значительно шире и разностороннее, при этом они стали вырисовываться только сейчас, в последней трети XX века, когда гидрогеология из учения о явлениях стала превращаться в науку о процессах и закономерностях. Современный период ознаменовался более углубленным и широким взглядом на предмет ее исследований.

Только имея предметом исследований обособленную материальную систему — подземную гидросферу, гидрогеология стала самостоятельной научной дисциплиной. Тем не менее подземные воды как составная часть подземной гидросферы, естественно, остаются основным объектом ее изучения. Человечеству нужна вода — питьевая, лечебная, для орошения и т. д. Однако гравитационные воды земных недр должны изучаться не сами по себе, а в тесной связи с другими внутриземными разновидностями Н2О. Тогда гидрогеология станет в подлинном смысле учением о геологии воды.

Гидрогеология — наука, интерес к которой неуклонно возрастает. Как уже говорилось, колоссальные и все увеличивающиеся потребности в воде, с одной стороны, и жизненно важная задача охраны ресурсов подземной гидросферы, вызванная усиливающейся на нее техногенной нагрузкой, с другой — вот что тому причина. Да и объектом ее является важнейший элемент природной среды. Перед гидрогеологами стоят ответственные задачи, весьма актуальные как в практическом, так и в научном отношениях. Назовем важнейшие из них.

1. Количественно-качественная оценка ресурсов подземной гидросферы — эта проблема, вероятно, должна быть названа первой, поскольку всякое исследование начинается с оценки того, что считается предметом изучения. К тому же подземную гидросферу мы знаем еще плохо, наши оценки ресурсов и состава подземных вод весьма приблизительны. Водные растворы земных недр — динамичная система, которая содержит Н2О в различных фазах и состояниях и характеризуется постоянно изменяющимся составом раствора. Да и находятся они в непрерывном круговороте, будучи связаны с мантией и космосом. В этом одна из основных трудностей количественно-качественной оценки ресурсов подземной гидросферы. Важны не столько глобальные, сколько территориальные и локальные оценки в первую очередь ресурсов и состава подземных вод, пригодных для нужд водоснабжения и мелиорации или использования в лечебных, промышленных и термоэнергетических целях. Количественно-качественное изучение подземных вод позволит более целенаправленно бороться с их отрицательным влиянием.

Итогом количественно-качественной оценки ресурсов подземной гидросферы должны быть закономерности распространения воды в недрах Земли. Применительно к подземным водам они находят выражение в гидрогеологическом районировании, различных видах зональности и т. д. Задача состоит в том, чтобы глубже изучить закономерности распространения других компонентов подземной гидросферы и познать их взаимоотношение с подземными водами.

2. Изучение происхождения и эволюции подземной гидросферы представляет следующую проблему, которая может считаться историческим базисом гидрогеологии и которой мы только что касались. Пути странствования воды в Земле, энергетика системы «вода — порода — газ — живое вещество», водообмен и массоперенос в подземной гидросфере — такова в кратком виде сущность подобного направления исследований, хотя чаще гидрогеологи ее сужают еще больше — до формирования подземных вод (их ресурсов и состава). Над этой интересной проблемой гидрогеологам предстоит упорно работать.

3. Геологическая деятельность воды в недрах Земли хотя и изучается давно, но в полной мере значение этой проблемы стало вырисовываться только в последние годы. К сожалению, пока у нас явно недостаточные представления, особенно об участии воды в глубинных процессах, о ее роли в формировании и разрушении месторождений полезных ископаемых, влиянии на различные геофизические поля. Тут поистине «целина», «подъем» которой начат, например, на стыке гидрогеологии и сейсмологии в виде новой отрасли знаний — сейсмогидрогеологии.

4. Человек, осваивая ресурсы подземной гидросферы, все больше воздействует на ее составные компоненты. Приостановить влияние производственной деятельности или, по современной терминологии, техногенной нагрузки, трудно — оно прогрессирует. Поэтому жизнь настоятельно выдвигает проблему рационального использования и охраны ресурсов подземной гидросферы.

5. В заключение назовем проблему недалекого будущего — управление режимом подземной гидросферы. Количественный прогноз возможных последствий и разработка мероприятий по регулированию режима подземной гидросферы — примерно так формулируется поставленная задача. Ее постановка становится очевидной в свете решений XXVI съезда КПСС об охране природы. На первый план выдвигается научное предвидение, гидрогеологический прогноз.

Это будет несомненно ведущее направление гидрогеологических исследований будущего. Речь идет, образно говоря, о решении кибернетической задачи — поиске оптимального взаимоотношения подземной гидросферы с оказываемыми на нее техногенными нагрузками. Проблема очень сложная: прикладная и одновременно теоретическая. Она может быть уподоблена задаче со многими неизвестными.

Конечно, названы далеко не все проблемы, волнующие гидрогеологов. Но и те, которые затронуты, свидетельствуют о заманчивом будущем гидрогеологии. А сколько еще не названных задач! Достаточно упомянуть так называемую «морскую» гидрогеологию и зарождение новой науки — гидропланетологии.

На этом заканчивается наше повествование. Изучение подземной гидросферы продолжается. Ее ресурсы — один из резервов спасения человечества от «водного голода» и одновременно источник здоровья, тепла, разнообразных химических элементов. Поставить эти богатства на службу человека, приумножить их и сохранить для будущих поколений — благодарная цель исследователей, проникающих в тайны подземной гидросферы.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Бисвас А. К. Человек и вода. Л.: Гидрометеоиздат, 1975. 288 с. Гидрогеология СССР. В 50-ти т. М.: Недра, 1966–1978.

Дерпгольц В. Ф. Мир воды. Л.: Недра, 1979. 254 с.

Каменский Г. Н., Толстихина М. М., Толстихин Н. И. Гидрогеология СССР. М.: Госгеолтехиздат, 1959. 366 с.

Карцев А. А., Вагин С. В. Невидимый океан. М.: Недра, 1973. 110 с.

Кейльгак К. Подземные воды. М. — Л.: изд. ОНТИ, 1935. 494 с.

Киссин И. Г. Вода под землей. М.: Наука, 1976. 224 с.

Кудельский А. В. Рассказы о воде: Белорусские криницы. Минск: Наука и техника, 1981. 120 с.

Ларионов А. К. Занимательная гидрогеология. М.: Недра, 1979.158 с.

Львович М. И. Мировые водные ресурсы и их будущее. М.: Мысль, 1974. 448 с.

Минеральные воды юга Восточной Сибири/Под ред. В. Г. Ткачук и Н. И. Толстихина. Т. 1. М. — Л.: Изд-во АН СССР, 1961. 346 с.

Никитин С. Н. Грунтовые и артезианские воды на Русской равнине. Спб., 1900. 71 с.

Овчинников А. М. Общая гидрогеология. 2-е изд. М.: Госгеолтехиздат, 1955. 383 с.

Основы гидрогеологии. В 6-ти т. Новосибирск: Наука, 1981–1984.

Пиннекер Е. В. Охрана подземной гидросферы. М.: Знание, 1979. 48 с.

Плотников Н. И. Подземные воды — наше богатство. М.: Недра, 1976. 208 с.

Посохов Е. В., Толстихин Н. И. Минеральные воды (лечебные, промышленные, энергетические). Л.: Недра, 1977. 240 с.

Саваренский Ф. П. Гидрогеология. 2-е изд. М. — Л.: изд. ОНТИ, 1935. 336 с.

Справочное руководство гидрогеолога. В 2-х т. Л.: Недра, 1979.

Чирвинский П. Н. Учебник гидрогеологии. Ростов н/Д.: Госиздат, 1922. 74 с.

Швецов П. Ф. Живая вода в недрах Севера. М.: Наука, 1981. 86 с. 

INFO


УДК 556.3

Пиннекер Е. В. Подземная гидросфера. — Новосибирск: Наука, 1984.


П1904060000-253/042 (02)-84*243-84-III


Евгений Викторович Пиннекер

ПОДЗЕМНАЯ ГИДРОСФЕРА


Утверждено к печати

редколлегией серии научно-популярных изданий СО АН СССР


Редактор издательства И. С. Цитович

Художественный редактор М. Ф. Глазырина

Художник Н. А. Пискун

Технический редактор Н. М. Бурлаченко

Корректоры И. А. Литвинова, Е. Н. Зимина


ИБ № 23557


Сдано в набор 22.02.84. Подписано к печати 04.09.84. МН-02552. Формат 84х108 1/32. Бумага типографская № 3. Обыкновенная гарнитура. Высокая печать. Усл. печ. л. 8,4. Усл. кр. отт. 8, 7. Уч. изд. л. 9. Тираж 8200 экз. Заказ № 78. Цена 60 коп.


Издательство «Наука», Сибирское отделение.

630099, Новосибирск, 99, Советская, 18.


4-я типография издательства «Наука».

630077, Новосибирск, 77, Станиславского, 25.


…………………..
FB2 — mefysto, 2024




Примечания

1

Изучение подземных вод становится одной из основных задач основанных в этих странах в 70-х и 80-х годах XIX века учреждений геологической службы,

(обратно)

2

Рассолами называются такие воды, соленасыщенность которых превышает 35 граммов солей на 1 килограмм раствора. Они распространены на соляных месторождениях и в нижних частях осадочного чехла.

(обратно)

3

Форшок — предварительный толчок, предшествующий основному во время землетрясения,

(обратно)

4

Ее также используют для поисков рудных залежей, таинственных «подземных излучений» и просто шарлатанства. Наряду с прутьями применяют проволоку, маятник и т. д.

(обратно)

5

Экспериментальные исследования в этом плане ведутся, например, у нас в Грозном и в США, где на опытном полигоне близ Лос-Аламоса планируется строительство электростанции мощностью до 100 мегаватт, источником энергии которой станет вода, закачиваемая в недра Земли и нагретая там до 200–250 °C.

(обратно)

Оглавление

  • ПОЧЕМУ И КАК ПОЯВИЛАСЬ ЭТА КНИГА (вместо предисловия)
  • ВЗГЛЯД В ПРОШЛОЕ
  • ЧТО ТАМ, В ЗЕМНЫХ НЕДРАХ!
  • РОДОСЛОВНАЯ ВОДЫ
  • КАК ПОЯВИЛИСЬ РАСТВОРЕННЫЕ В ВОДЕ ВЕЩЕСТВА
  • СКУЛЬПТОР ЗЕМНОЙ КОРЫ
  • ПОДЗЕМНЫЕ ВОДЫ — КОМПЛЕКСНОЕ ПОЛЕЗНОЕ ИСКОПАЕМОЕ
  • ВРАГ И РАЗРУШИТЕЛЬ
  • УСТРАНИТЬ ОПАСНОСТЬ!
  • ПРОФЕССИЯ — ГИДРОГЕОЛОГ
  • ВЗГЛЯД В БУДУЩЕЕ  (вместо послесловия)
  • РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА
  • INFO
  • *** Примечания ***